Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 11 (2022)  /  Artículo
ARTÍCULO
TITULO

An Intelligent Optimization Back-Analysis Method for Geomechanical Parameters in Underground Engineering

Jianhe Li    
Weizhe Sun    
Guoshao Su and Yan Zhang    

Resumen

The geomechanical parameters in underground engineering are usually difficult to determine, which can pose great obstacles in underground engineering. A novel displacement back-analysis method is proposed to determine the geomechanical parameters in underground engineering. In this method, the problem of geomechanical parameter determination is converted into an optimization problem, regarding the geomechanical parameters as the optimization parameters, and the error between the calculated results and the field measurement information as the optimization objective function. The grasshopper optimization algorithm (GOA), which offers excellent global optimization performance, and the Gaussian process regression (GPR) machine learning, offering powerful fitting ability, are combined to address the time-consuming numerical calculations. Furthermore, the proposed method is combined with the 3D numerical calculation software FLAC3D to form the GOA-GPR-FLAC3D method, which can be used in the displacement back-analysis of geomechanical parameters in underground engineering. The results of a case study show that the proposed method can greatly improve computational efficiency while ensuring high precision compared with the GOA. When applied to the Tai?an Pumped Storage Power Station, this method can obtain more accurate results compared with the GOA under the same evaluation times and is more suitable for the back-analysis of rock parameters in underground engineering.

 Artículos similares

       
 
Yadong Zhou, Zhenchao Teng, Linlin Chi and Xiaoyan Liu    
Based on the unit life and death technology, the dynamic evolution process of soil loss is considered, and a pipe-soil nonlinear coupling model of buried pipelines passing through the collapse area is constructed. The analysis shows that after the third ... ver más
Revista: Applied Sciences

 
Ying-Qing Guo, Meng Li, Yang Yang, Zhao-Dong Xu and Wen-Han Xie    
As a typical intelligent device, magnetorheological (MR) dampers have been widely applied in vibration control and mitigation. However, the inherent hysteresis characteristics of magnetic materials can cause significant time delays and fluctuations, affe... ver más
Revista: Information

 
Mattia Neroni, Massimo Bertolini and Angel A. Juan    
In automated storage and retrieval systems (AS/RSs), the utilization of intelligent algorithms can reduce the makespan required to complete a series of input/output operations. This paper introduces a simulation optimization algorithm designed to minimiz... ver más
Revista: Algorithms

 
Yuzhu Zhang and Hao Xu    
This study investigates the problem of decentralized dynamic resource allocation optimization for ad-hoc network communication with the support of reconfigurable intelligent surfaces (RIS), leveraging a reinforcement learning framework. In the present co... ver más
Revista: Algorithms

 
Xiaobang Wang, Yang Yu, Siyu Li, Jie Zhang and Zhijie Liu    
The Revolving Floating Crane (RFC) is a specialized engineering vessel crucial for offshore lifting operations, such as offshore platform construction and deep-water salvaging. It boasts impressive lifting capacity, good adaptability to various environme... ver más