Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 4 (2020)  /  Artículo
ARTÍCULO
TITULO

Action Recognition Based on the Fusion of Graph Convolutional Networks with High Order Features

Jiuqing Dong    
Yongbin Gao    
Hyo Jong Lee    
Heng Zhou    
Yifan Yao    
Zhijun Fang and Bo Huang    

Resumen

Skeleton-based action recognition is a widely used task in action related research because of its clear features and the invariance of human appearances and illumination. Furthermore, it can also effectively improve the robustness of the action recognition. Graph convolutional networks have been implemented on those skeletal data to recognize actions. Recent studies have shown that the graph convolutional neural network works well in the action recognition task using spatial and temporal features of skeleton data. The prevalent methods to extract the spatial and temporal features purely rely on a deep network to learn from primitive 3D position. In this paper, we propose a novel action recognition method applying high-order spatial and temporal features from skeleton data, such as velocity features, acceleration features, and relative distance between 3D joints. Meanwhile, a method of multi-stream feature fusion is adopted to fuse these high-order features we proposed. Extensive experiments on Two large and challenging datasets, NTU-RGBD and NTU-RGBD-120, indicate that our model achieves the state-of-the-art performance.

 Artículos similares

       
 
Hui-Jun Kim, Jung-Soon Kim and Sung-Hee Kim    
The existing question-and-answer screening test has a limitation in that test accuracy varies due to a high learning effect and based on the inspector?s competency, which can have consequences for rapid-onset cognitive-related diseases. To solve this pro... ver más
Revista: Applied Sciences

 
Miao Feng and Jean Meunier    
Recognizing human actions can help in numerous ways, such as health monitoring, intelligent surveillance, virtual reality and human?computer interaction. A quick and accurate detection algorithm is required for daily real-time detection. This paper first... ver más
Revista: Algorithms

 
Shukai Li, Xiaofang Wang, Dongri Shan and Peng Zhang    
Temporal modeling is a key problem in action recognition, and it remains difficult to accurately model temporal information of videos. In this paper, we present a local spatiotemporal extraction module (LSTE) and a channel time excitation module (CTE), w... ver más
Revista: Applied Sciences

 
Abdorreza Alavigharahbagh, Vahid Hajihashemi, José J. M. Machado and João Manuel R. S. Tavares    
In this article, a hierarchical method for action recognition based on temporal and spatial features is proposed. In current HAR methods, camera movement, sensor movement, sudden scene changes, and scene movement can increase motion feature errors and de... ver más
Revista: Information

 
Hayat Ullah and Arslan Munir    
The recognition of human activities using vision-based techniques has become a crucial research field in video analytics. Over the last decade, there have been numerous advancements in deep learning algorithms aimed at accurately detecting complex human ... ver más
Revista: Algorithms