Resumen
Accelerated urbanization and the ensuing rapid increase in urban populations led to the need for a tremendous number of parking spaces. Automated parking systems coupled with new parking lot layouts can effectively address the need. However, most automated parking systems available on the market today use ultrasonic sensors to detect vacant parking spaces. One limitation of this method is that a reference vehicle must be parked in an adjacent space, and the accuracy of distance information is highly dependent on the positioning of the reference vehicle. To overcome this limitation, an around view monitoring-based method for detecting parking spaces and algorithms analyzing the vacancy of the space are proposed in this study. The framework of the algorithm comprises two main stages: parking space detection and space occupancy classification. In addition, a highly robust analysis method is proposed to classify parking space occupancy. Two angles of view were used to detect features, classified as road or obstacle features, within the parking space. Road features were used to provide information regarding the possible vacancy of a parking space, and obstacle features were used to provide information regarding the possible occupancy of a parking space. Finally, these two types of information were integrated to determine whether a specific parking space is occupied. The experimental settings in this study consisted of three common settings: an indoor parking lot, an outdoor parking lot, and roadside parking spaces. The final tests showed that the method?s detection rate was lower in indoor settings than outdoor settings because lighting problems are severer in indoor settings than outdoor settings in around view monitoring (AVM) systems. However, the method achieved favorable detection performance overall. Furthermore, we tested and compared performance based on road features, obstacle features, and a combination of both. The results showed that integrating both types of features produced the lowest rate of classification error.