Redirigiendo al acceso original de articulo en 19 segundos...
ARTÍCULO
TITULO

Object Detection for Underwater Cultural Artifacts Based on Deep Aggregation Network with Deformation Convolution

Yutuo Yang    
Wei Liang    
Daoxian Zhou    
Yinlong Zhang and Gaofei Xu    

Resumen

Cultural artifacts found underwater are located in complex environments with poor imaging conditions. In addition, the artifacts themselves present challenges for automated object detection owing to variations in their shape and texture caused by breakage, stacking, and burial. To solve these problems, this paper proposes an underwater cultural object detection algorithm based on the deformable deep aggregation network model for autonomous underwater vehicle (AUV) exploration. To fully extract the object feature information of underwater objects in complex environments, this paper designs a multi-scale deep aggregation network with deformable convolutional layers. In addition, the approach also incorporates a BAM module for feature optimization, which enhances the potential feature information of the object while weakening the background interference. Finally, the object prediction is achieved through feature fusion at different scales. The proposed algorithm has been extensively validated and analyzed on the collected underwater artifact datasets, and the precision, recall, and mAP of the algorithm have reached 93.1%, 91.4%, and 92.8%, respectively. In addition, our method has been practically deployed on an AUV. In the field testing over a shipwreck site, the artifact detection frame rate reached up to 18 fps, which satisfies the real-time object detection requirement.

 Artículos similares

       
 
Yuchen Dong, Heng Zhou, Chengyang Li, Junjie Xie, Yongqiang Xie and Zhongbo Li    
Camouflaged object detection (COD) is an arduous challenge due to the striking resemblance of camouflaged objects to their surroundings. The abundance of similar background information can significantly impede the efficiency of camouflaged object detecti... ver más
Revista: Applied Sciences

 
Yiming Mo, Lei Wang, Wenqing Hong, Congzhen Chu, Peigen Li and Haiting Xia    
The intrusion of foreign objects on airport runways during aircraft takeoff and landing poses a significant safety threat to air transportation. Small-scale Foreign Object Debris (FOD) cannot be ruled out on time by traditional manual inspection, and the... ver más
Revista: Applied Sciences

 
Ugur Akis and Serkan Dislitas    
In applications reliant on image processing, the management of lighting holds significance for both precise object detection and efficient energy utilization. Conventionally, lighting control involves manual switching, timed activation or automated adjus... ver más
Revista: Applied Sciences

 
Xinmin Li, Yingkun Wei, Jiahui Li, Wenwen Duan, Xiaoqiang Zhang and Yi Huang    
Object detection in unmanned aerial vehicle (UAV) images has become a popular research topic in recent years. However, UAV images are captured from high altitudes with a large proportion of small objects and dense object regions, posing a significant cha... ver más
Revista: Applied Sciences

 
Noor Ul Ain Tahir, Zuping Zhang, Muhammad Asim, Junhong Chen and Mohammed ELAffendi    
Enhancing the environmental perception of autonomous vehicles (AVs) in intelligent transportation systems requires computer vision technology to be effective in detecting objects and obstacles, particularly in adverse weather conditions. Adverse weather ... ver más
Revista: Algorithms