Resumen
To establish the uncertain influence that the joint distribution of precipitation and reference evapotranspiration has on net irrigation water requirement, a Copula function?Monte Carlo method (CFMC) was proposed to calculate the probability of irrigation water requirement. Taking the Jingdian Irrigation District in Northwest China as an example, the distribution laws of precipitation and reference evapotranspiration were studied. Furthermore, five typical years under different crop planting structure conditions were selected, and the variation characteristics of net irrigation water requirement in each typical year under the conditions of climate uncertainty were analyzed. The results revealed the optimal distribution functions of precipitation and reference evapotranspiration to be gamma distribution and lognormal distribution. The probability density map of the joint distribution of precipitation and reference evapotranspiration has a ?saddle? shape; that is, irrigation water requirement and reference evapotranspiration are usually inversely related. As the probability of the irrigation water requirement increases, the net irrigation water requirement in the irrigation area also increases. The CFMC method can determine the design value of the net irrigation water requirement under a specific probability for typical years under different crop planting structure conditions, which can provide a reference for agricultural water resource allocation in irrigation areas.