Resumen
Soil microorganisms play a crucial role in maintaining the structure and function of soil ecosystems. This study aims to explore the effects of microbial fertilizers on improving soil physicochemical properties and promoting plant growth. The results show that the application of microbial fertilizers significantly increases the richness of soil microorganisms, maintains soil microecological balance, and effectively improves the soil environment. Through various secondary metabolites, proteins, and mucilage secreted by the developing plant root system, microbial fertilizers recruit specific fungal microorganisms. These microorganisms, by binding soil particles with their extracellular polysaccharides and entwining them, fix the soil, enhance the stability of soil aggregates, and ameliorate soil compaction. Moreover, after the application of microbial fertilizers, the enriched soil microbial community not only promotes the plant?s absorption and utilization of key elements such as nitrogen (N), phosphorus (P), and potassium (K), thereby increasing fruit yield and quality, but also competes with pathogens and induces systemic resistance in plants, effectively warding off pathogenic invasions. This study highlights the potential and importance of microbial fertilizers in promoting sustainable agricultural development, offering new strategies and perspectives for future agricultural production.