Resumen
Composite structures have become increasingly popular in civil engineering due to many advantages, such as light weight, excellent corrosion resistance and high productivity. However, they still lack the strength, stiffness, and convenience of constructions of fastener connections in steel structures. The most popular fastener connections in steel structures are slip-critical connections, and the major factors that influence their strength are the slip factors between faying surfaces and the clamping force due to the prevailing torque. This paper therefore examined the effect that changing the following parameters had on the slip factor: (1) replacing glass fiber reinforced plastic (GFRP) cover plates with stainless-steel cover plates; (2) adopting different surface treatments for GFRP-connecting plates and stainless-steel cover plates, respectively; and (3) applying different prevailing torques to the high-strength bolts. The impact on the long-term effects of the creep property in composite elements under the pressure of high-strength bolts was also studied with pre-tension force relaxation tests. It is shown that a high-efficiency fastener connection can be obtained by using stainless-steel cover plates with a grit-blasting surface treatment, with the maximum slip factor reaching 0.45, while the effects of the creep property are negligible.