Resumen
Spillway is a crucial hydraulic structure used to discharge excess water from the dam reservoir. Air entrainment is essential to prevent cavitation damage on the spillway, however, without air entrainment the risk of cavitation over the spillway increases. The most important parameter for the determination of air entrainment in stepped spillways is the inception point. The inception point is the location where the air starts to inter into the water flow surface over the spillway. It occurs when the turbulent boundary layer meets the free surface. The location of the inception point depends upon different parameters like flow rate, geometry, step size, and slope of the spillway. The main aim of this study was applying numerical simulation by using the realizable k-? model and the volume of fluid (VOF) method to locate the location of the inception point. For this purpose, by using different stepped spillways with four different slopes (12.5°, 19°, 29°, and 35°) different flow rates were simulated, which gives the location of the inception point of different channel slopes of stepped spillways at different flow rates. The results demonstrated that the inception point location of mild slopes is farther from the crest of the spillway than the steep slope stepped spillway. Non-aerated flow zone length increases when the channel slope decreases from steep to mild slope.