Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 23 (2023)  /  Artículo
ARTÍCULO
TITULO

Controlling Thermal Radiation in Photonic Quasicrystals Containing Epsilon-Negative Metamaterials

Ameneh Mikaeeli    
Alireza Keshavarz    
Ali Baseri and Michal Pawlak    

Resumen

The transfer matrix approach is used to study the optical characteristics of thermal radiation in a one-dimensional photonic crystal (1DPC) with metamaterial. In this method, every layer within the multilayer structure is associated with its specific transfer matrix. Subsequently, it links the incident beam to the next layer from the previous layer. The proposed structure is composed of three types of materials, namely InSb, ZrO2, and Teflon, and one type of epsilon-negative (ENG) metamaterial and is organized in accordance with the laws of sequencing. The semiconductor InSb has the capability to adjust bandgaps by utilizing its thermally responsive permittivity, allowing for tunability with temperature changes, while the metamaterial modifies the bandgaps according to its negative permittivity. Using quasi-periodic shows that, in contrast to employing absolute periodic arrangements, it produces more diverse results in modifying the structure?s band-gaps. Using a new sequence arrangement mixed-quasi-periodic (MQP) structure, which is a combination of two quasi periodic structures, provides more freedom of action for modifying the properties of the medium than periodic arrangements do. The ability to control thermal radiation is crucial in a range of optical applications since it is frequently unpolarized and incoherent in both space and time. These configurations allow for the suppression and emission of thermal radiation in a certain frequency range due to their fundamental nature as photonic band-gaps (PBGs). So, we are able to control the thermal radiation by changing the structure arrangement. Here, the We use an indirect method based on the second Kirchoff law for thermal radiation to investigate the emittance of black bodies based on a well-known transfer matrix technique. We can measure the transmission and reflection coefficients with associated transmittance and reflectance, T and R, respectively. Here, the effects of several parameters, including the input beam?s angle, polarization, and period on tailoring the thermal radiation spectrum of the proposed structure, are studied. The results show that in some frequency bands, thermal radiation exceeded the black body limit. There were also good results in terms of complete stop bands for both TE and TM polarization at different incident angles and frequencies. This study produces encouraging results for the creation of Terahertz (THz) filters and selective thermal emitters. The tunability of our media is a crucial factor that influences the efficiency and function of our desired photonic outcome. Therefore, exploiting MQP sequences or arrangements is a promising strategy, as it allows us to rearrange our media more flexibly than quasi-periodic sequences and thus achieve our optimal result.

 Artículos similares

       
 
Carlos Carbajosa, Alejandro Martinez-Cava, Eusebio Valero and Guillermo Paniagua    
As high-pressure-turbines operate at extreme temperature conditions, base bleed can be applied at the trailing edge of the airfoils, enhancing the thermal protection along the trailing edge surface, but also disrupting the trailing edge flow and altering... ver más
Revista: Applied Sciences

 
Daniel Kalús, Daniela Koudelková, Veronika Mucková, Martin Sokol and Mária Kurcová    
The research described in this study focuses on the innovation and optimization of building envelope panels with integrated energy-active elements in the thermal barrier function. It is closely related to developing and implementing the prototype prefabr... ver más
Revista: Coatings

 
Asadullah Dawood, Shazia Bashir, Naveed Ahmed, Asma Hayat, Abdullah Yahia AlFaify, Syed Muhammad Abouzar Sarfraz, Shahab Ahmed Abbasi and Ateekh Ur Rehman    
In the present study, the influence of a 1.1 tesla Transverse Magnetic Field (TMF) on Laser-Induced Breakdown Spectroscopy (LIBS) of Mg-alloy plasma has been explored. The Mg plasma was produced using an Nd: YAG laser (1064 nm, 10 ns) at an intensity of ... ver más
Revista: Coatings

 
Chenwei Zhao, Zecan Tu and Junkui Mao    
The film-cooling performance of a 2.5D braided ceramic matrix composite (CMC) plate with preformed holes was numerically studied. Four numerical models containing braided structures were established: one model with film-cooling holes preformed through fi... ver más
Revista: Aerospace

 
Linyuan Lian, Youyou Li, Daoli Zhang and Jianbing Zhang    
InP quantum dots (QDs) are promising down-conversion phosphors for white light LEDs. However, the mainstream InP QDs synthesis uses expensive phosphorus source. Here, economic, in situ-generated PH3 is used to synthesize InP QDs and a two-step coating of... ver más
Revista: Coatings