Resumen
Tomato, which is mainly established with grafted seedlings, is one of the most popular vegetables worldwide with a high nutritional value,. Market demand for grafted seedlings is high in specific seasons; thus, commercial nurseries face a problem of limited space availability during the healing stage. Light quality is an essential parameter during healing that can adjust seedling development towards desirable traits and lead to time and space saving during seedling production. Moreover, transplant shock constitutes another challenge that could limit crop yield. The objective of this study was to evaluate the overall quality of grafted tomato seedlings and their potential adjustment to transplant shock as affected by different light spectra during healing in a chamber. Evaluations were conducted immediately after exiting the healing chamber and after transplantation into pots. Light wavelengths were used from fluorescent lamps (FL) or light-emitting diodes with red (R), blue (B), red?blue combinations with 12 and 24% blue (12B and 24B), and white (W) emitting 11% blue. W enhanced the dry shoot biomass and the root architecture before and after transplantation. 24B led to an increased stem diameter, root development, and phenolic and antioxidant accumulation at both phases of the experiment. 12B enhanced the leaf area before transplantation and root development after transplantation. FL, R and B induced inferior seedling growth compared to the red?blue-containing LEDs, with B performing poorly in almost all tested parameters. Overall, red, including 11?24% blue, provides the optimum light conditions during the healing stage for the production of high-quality grafted tomato seedlings, with advanced capabilities of abiotic stress adaptation to transplant shock.