Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Applied Sciences  /  Vol: 11 Par: 8 (2021)  /  Artículo
ARTÍCULO
TITULO

A Five-Step Approach to Planning Data-Driven Digital Twins for Discrete Manufacturing Systems

Matevz Resman    
Jernej Protner    
Marko Simic and Niko Herakovic    

Resumen

A digital twin of a manufacturing system is a digital copy of the physical manufacturing system that consists of various digital models at multiple scales and levels. Digital twins that communicate with their physical counterparts throughout their lifecycle are the basis for data-driven factories. The problem with developing digital models that form the digital twin is that they operate with large amounts of heterogeneous data. Since the models represent simplifications of the physical world, managing the heterogeneous data and linking the data with the digital twin represent a challenge. The paper proposes a five-step approach to planning data-driven digital twins of manufacturing systems and their processes. The approach guides the user from breaking down the system and the underlying building blocks of the processes into four groups. The development of a digital model includes predefined necessary parameters that allow a digital model connecting with a real manufacturing system. The connection enables the control of the real manufacturing system and allows the creation of the digital twin. Presentation and visualization of a system functioning based on the digital twin for different participants is presented in the last step. The suitability of the approach for the industrial environment is illustrated using the case study of planning the digital twin for material logistics of the manufacturing system.

 Artículos similares

       
 
Philipp Spelten, Morten-Christian Meyer, Anna Wagner, Klaus Wolf and Dirk Reith    
Integrating physical simulation data into data ecosystems challenges the compatibility and interoperability of data management tools. Semantic web technologies and relational databases mostly use other data types, such as measurement or manufacturing des... ver más
Revista: Information

 
Bata Hena, Ziang Wei, Luc Perron, Clemente Ibarra Castanedo and Xavier Maldague    
Industrial radiography is a pivotal non-destructive testing (NDT) method that ensures quality and safety in a wide range of industrial sectors. Conventional human-based approaches, however, are prone to challenges in defect detection accuracy and efficie... ver más
Revista: Information

 
Carlos Serôdio, Pedro Mestre, Jorge Cabral, Monica Gomes and Frederico Branco    
In the context of Industry 4.0, this paper explores the vital role of advanced technologies, including Cyber?Physical Systems (CPS), Big Data, Internet of Things (IoT), digital twins, and Artificial Intelligence (AI), in enhancing data valorization and m... ver más
Revista: Applied Sciences

 
Touraj Farsadi, Majid Ahmadi, Melin Sahin, Hamed Haddad Khodaparast, Altan Kayran and Michael I. Friswell    
In the field of aerospace engineering, the design and manufacturing of high aspect ratio composite wings has become a focal point of innovation and efficiency. These long, slender wings, constructed with advanced materials such as carbon fiber and employ... ver más
Revista: Aerospace

 
Elnaz Ghanbary Kalajahi, Mehran Mahboubkhah and Ahmad Barari    
Closed-loop manufacturing is crucial in Industry 4.0, since it provides an online detection?correction cycle to optimize the production line by using the live data provided from the product being manufactured. By integrating the inspection system and man... ver más
Revista: Applied Sciences