Estimation of Pollutant Emissions and Environmental Costs Caused by Ships at Port: A Case Study of Busan Port
Abstract
:1. Introduction
2. Methods
2.1. Korean Port Management Information System (Port-MIS)
2.2. Ship Emissions Estimation
2.3. Environmental Cost Estimation
2.4. SEC Estimation
3. Estimation of Ship Emissions and Environmental Cost at Busan Port
3.1. Port-MIS Ship Entry Data from 2015–2019
3.2. Ship Pollutant Emissions during Hoteling at Busan Port
3.3. Environmental Cost by Ship Emissions at Busan Port
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Ship Type | Pollutants | |||||
---|---|---|---|---|---|---|
NOx | SO2 | CO2 | VOC | PM2.5 | PM10 | |
Liquid bulk ships | 103,332.04 | 7153.76 | 5,484,546.76 | 3179.45 | 2146.13 | 2265.36 |
Dry bulk carriers | 31,081.65 | 2151.81 | 1,649,718.23 | 956.36 | 645.54 | 681.41 |
Container | 840,867.64 | 420,433.82 | 44,630,666.92 | 25,872.85 | 23,285.57 | 24,579.21 |
General cargo | 95,556.73 | 6615.47 | 5,071,856.99 | 2940.21 | 1984.64 | 2094.90 |
Ro–Ro cargo | 14,457.90 | 7228.95 | 767,380.99 | 444.86 | 400.37 | 422.62 |
Passenger | 29,488.50 | 14,744.25 | 1,565,158.81 | 907.34 | 816.60 | 861.97 |
Fishing | 97,471.30 | 6748.01 | 5,173,476.57 | 2999.12 | 2024.40 | 2136.87 |
Other | 83,777.16 | 5799.96 | 4,446,633.95 | 2577.76 | 1739.99 | 1836.65 |
Tugs | 25,275.90 | 1749.87 | 1,341,566.87 | 777.72 | 524.96 | 554.13 |
Sum | 1,321,308.81 | 472,625.89 | 70,131,006.09 | 40,655.66 | 33,568.20 | 35,433.10 |
Ship Type | Pollutants | |||||
---|---|---|---|---|---|---|
NOx | SO2 | CO2 | VOC | PM2.5 | PM10 | |
Liquid bulk ships | 127,041.46 | 8795.18 | 6,742,970.06 | 3908.97 | 2638.55 | 2785.14 |
Dry bulk carriers | 29,435.59 | 2037.85 | 1,562,350.48 | 905.71 | 611.35 | 645.32 |
Container | 918,555.96 | 459,277.98 | 48,754,124.11 | 28,263.26 | 25,436.93 | 26,850.10 |
General cargo | 93,570.25 | 6477.94 | 4,966,420.95 | 2879.08 | 1943.38 | 2051.35 |
Ro–Ro cargo | 20,607.28 | 10,303.64 | 1,093,771.15 | 634.07 | 570.66 | 602.37 |
Passenger | 30,090.89 | 15,045.45 | 1,597,132.08 | 925.87 | 833.29 | 879.58 |
Fishing | 86,882.86 | 6014.97 | 4,611,474.65 | 2673.32 | 1804.49 | 1904.74 |
Other | 46,815.23 | 3241.05 | 2,484,808.53 | 1440.47 | 972.32 | 1026.33 |
Tugs | 26,034.79 | 1802.41 | 1,381,846.60 | 801.07 | 540.72 | 570.76 |
Sum | 1,379,034.32 | 512,996.47 | 73,194,898.60 | 42,431.83 | 35,351.70 | 37,315.69 |
Ship Type | Pollutants | |||||
---|---|---|---|---|---|---|
NOx | SO2 | CO2 | VOC | PM2.5 | PM10 | |
Liquid bulk ships | 92,283.77 | 6388.88 | 4,898,138.78 | 2839.50 | 1916.66 | 2023.14 |
Dry bulk carriers | 32,255.84 | 2233.10 | 1,712,040.86 | 992.49 | 669.93 | 707.15 |
Container | 869,822.05 | 434,911.02 | 46,167,477.84 | 26,763.76 | 24,087.38 | 25,425.57 |
General cargo | 89,713.53 | 6210.94 | 4,761,718.16 | 2760.42 | 1863.28 | 1966.80 |
Ro–Ro cargo | 17,179.44 | 8589.72 | 911,831.76 | 528.60 | 475.74 | 502.17 |
Passenger | 20,532.90 | 10,266.45 | 1,089,823.10 | 631.78 | 568.60 | 600.19 |
Fishing | 94,843.86 | 6566.11 | 5,034,020.10 | 2918.27 | 1969.83 | 2079.27 |
Other | 52,561.51 | 3638.87 | 2,789,803.39 | 1617.28 | 1091.66 | 1152.31 |
Tugs | 25,117.97 | 1738.94 | 1,333,184.32 | 772.86 | 521.68 | 550.66 |
Sum | 1,294,310.87 | 480,544.03 | 68,698,038.32 | 39,824.95 | 33,164.77 | 35,007.26 |
Ship Type | Pollutants | |||||
---|---|---|---|---|---|---|
NOx | SO2 | CO2 | VOC | PM2.5 | PM10 | |
Liquid bulk ships | 104,328.54 | 7222.75 | 5,537,437.89 | 3210.11 | 2166.82 | 2287.20 |
Dry bulk carriers | 35,590.40 | 2463.95 | 1,889,029.13 | 1095.09 | 739.19 | 780.25 |
Container | 924,449.25 | 462,224.62 | 49,066,921.67 | 28,444.59 | 25,600.13 | 27,022.36 |
General cargo | 73,668.52 | 5100.13 | 3,910,098.13 | 2266.72 | 1530.04 | 1615.04 |
Ro–Ro cargo | 8596.90 | 4298.45 | 456,296.80 | 264.52 | 238.07 | 251.29 |
Passenger | 21,443.92 | 10,721.96 | 1,138,177.23 | 659.81 | 593.83 | 626.82 |
Fishing | 90,299.15 | 6251.48 | 4,792,801.14 | 2778.44 | 1875.44 | 1979.64 |
Other | 43,139.49 | 2986.58 | 2,289,711.39 | 1327.37 | 895.97 | 945.75 |
Tugs | 18,831.32 | 1303.71 | 999,508.60 | 579.43 | 391.11 | 412.84 |
Sum | 1,320,347.49 | 502,573.62 | 70,079,981.99 | 40,626.08 | 34,030.61 | 35,921.20 |
References
- Buhaug, Ø.; Corbett, J.J.; Endresen, O.; Eyring, V.; Faber, J.; Hanayama, S.; Yoshida, K. Second IMO Greenhouse Gas Study; International Maritime Organization: London, UK, 2009; Available online: https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/SecondIMOGHGStudy2009.pdf (accessed on 21 August 2021).
- Franc, P.; Sutto, L. Impact analysis on shipping lines and European ports of a cap- and-trade system on CO2 emissions in maritime transport. Marit. Policy Manag. 2014, 41, 61–78. [Google Scholar] [CrossRef]
- Hossain, T.; Adams, M.; Walker, T.R. Role of sustainability in global seaports. Ocean Coast. Manag. 2021, 202, 105435. [Google Scholar] [CrossRef]
- Rahim, M.M.; Islam, T.; Kuruppu, S. Regulating global shipping corporations’ accountability for reducing greenhouse gas emissions in the seas. Mar. Policy 2016, 69, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Van, T.C.; Ramirez, J.; Rainey, T.; Ristovski, Z.; Brown, R.J. Global impacts of recent IMO regulations on marine fuel oil refining processes and ship emissions. Transp. Res. Part D Transp. Environ. 2019, 70, 123–134. [Google Scholar] [CrossRef]
- Darbra Roman, R.M.; Wooldridge, C.; Puig Duran, M. ESPO Environmental Report 2020-EcoPortsinsights 2020. 2020. Available online: https://www.espo.be/media/Environmental%20Report-WEB-FINAL.pdf (accessed on 1 March 2022).
- Gobbi, G.P.; Di Liberto, L.; Barnaba, F. Impact of port emissions on EU-regulated and non-regulated air quality indicators: The case of Civitavecchia (Italy). Sci. Total Environ. 2019, 719, 134984. [Google Scholar] [CrossRef]
- Hossain, T.; Adams, M.; Walker, T.R. Sustainability initiatives in Canadian ports. Mar. Policy 2019, 106, 103519. [Google Scholar] [CrossRef]
- Liu, H.; Fu, M.; Jin, X.; Shang, Y.; Shindell, D.; Faluvegi, G.; Shindell, C. Health and climate impacts of ocean-going vessels in East Asia. Nat. Clim. Chang. 2016, 6, 1037–1041. [Google Scholar] [CrossRef]
- Schnurr, R.E.; Walker, T.R. Marine Transportation and Energy Use. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–9. [Google Scholar] [CrossRef]
- Walker, T.R.; Adebambo, O.; Del Aguila Feijoo, M.C.; Elhaimer, E.; Hossain, T.; Edwards, S.J.; Morrison, C.E.; Romo, J.; Sharma, N.; Taylor, S.; et al. Environmental Effects of Marine Transportation. In World Seas: An Environmental Evaluation, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 505–530. ISBN 978-0-12-805052-1. [Google Scholar]
- IMO. Resolution MEPC 176(58), Revised MARPOL Annex VI. International Maritime Organization. 2008. Available online: https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/176(58).pdf (accessed on 21 August 2021).
- IMO. Resolution MEPC 280(70), Effective Date of Implementation of the Fuel oil Standard in Regulation 14.1.3 of MARPOL Annex VI. International Maritime Organization. 2016. Available online: https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/280(70).pdf (accessed on 21 August 2021).
- Chircop, A. The IMO Initial Strategy for the Reduction of GHGs from International Shipping: A Commentary. Int. J. Mar. Coast. Law 2019, 34, 482–512. [Google Scholar] [CrossRef]
- USEPA. Case Study of the San Pedro Bay Ports’ Clean Air Action Plans 2006–2018: Best Practices and Lessons Learned, EPA-420-R-21-011. 2021. Available online: https://www.epa.gov/ports-initiative/san-pedro-bay-ports-clean-air-action-plan-best-practices-and-lessons-learned (accessed on 20 June 2021).
- USEPA/CARB/SCAQMD. San Pedro Bay Ports Clean Air Action Plan (CAAP), US Environmental Protection Agency (USEPA)/California Air Resources Board (CARB)/South Coast Air Quality Management (SCAQMD). 2006. Available online: https://kentico.portoflosangeles.org/getmedia/4a54591c-83f2-4b60-acee-8473d6e8dc14/CAAP_Overview_Final_2 (accessed on 20 June 2021).
- Nunes, R.; Alvim-Ferraz, M.; Martins, F.; Sousa, S. Environmental and social valuation of shipping emissions on four ports of Portugal. J. Environ. Manag. 2019, 235, 62–69. [Google Scholar] [CrossRef]
- Song, S. Ship emissions inventory, social cost and eco-efficiency in Shanghai Yangshan port. Atmos. Environ. 2014, 82, 288–297. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2—Energy, Ch.3. Intergovernmental Panel on Climate Change. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 21 August 2021).
- Statista. The Largest Container Ports Worldwide in 2019. 2019. Available online: https://www.statista.com/statistics/264171/turnover-volume-of-the-largest-container-ports-worldwide/ (accessed on 20 June 2021).
- Ahn, Y.S.; Yuk, G.H.; Kim, D.K.; Lee, H.Y. A Study on Improvement Measures for Air Pollutants Management System and Policy in Korean Ports; Korea Maritime Institute: Busan, Korea, 2019; p. 224. Available online: https://www.kmi.re.kr/web/board/view.do?rbsIdx=286&page=2&idx=36976 (accessed on 21 August 2021).
- Kim, T.-G.; Kim, H.-S. Study on establishing Green Port Policy in Korea to meet Ports’ Characteristics: Development of Ulsan Green Port Policy by using AHP. J. Korean Navig. Port Res. 2014, 38, 549–559. [Google Scholar] [CrossRef] [Green Version]
- BPA. Press Release: Port PM2.5 Will Be Reduced by 70% by 2050 to Create Cleaner Air Quality. Busan Port Authority. 2020. Available online: https://www.busanpa.com/kor/Board.do?mode=view&idx=26602&mCode=MN1445 (accessed on 21 August 2021).
- BPA. Press Release: Promoting the Installation of Air Pollution Monitoring Stations in 5 Places in the North Port of Busan Port. Busan Port Authority. 2017. Available online: https://www.busanpa.com/kor/Board.do?mode=view&idx=19064&mCode=MN1445 (accessed on 21 August 2021).
- BPA. Press Release: Active Promotion of Busan Port Green Port Comprehensive Measures to Reduce Fine Dust. Busan Port Authority. 2018. Available online: https://www.busanpa.com/kor/Board.do?mode=view&idx=20838&mCode=MN1445 (accessed on 21 August 2021).
- An, J.; Lee, K.; Park, H. Effects of a Vessel Speed Reduction Program on Air Quality in Port Areas: Focusing on the Big Three Ports in South Korea. J. Mar. Sci. Eng. 2021, 9, 407. [Google Scholar] [CrossRef]
- Kim, K.; Roh, G.; Chun, K. Analysis of the Emission Benefits of Using Alternative Maritime Power (AMP) for Ships. J. Korean Soc. Mar. Environ. Saf. 2019, 25, 381–394. [Google Scholar] [CrossRef]
- MOF. Press Release: Signed an Agreement for a Pilot Project for AMP Facilities to Reduce Fine Dust in Ports. Ministry of Oceans and Fisheries. Available online: https://www.mof.go.kr/article/view.do?articleKey=26595&boardKey=10&menuKey=376¤tPageNo=1 (accessed on 21 August 2021).
- Song, H.S. Ministry of Oceans and Fisheries Gives up Business after Pointing out ‘Low AMP Usage Rate’? This Year’s Budget Zero. Busan Ilbo. 2021. Available online: http://www.busan.com/view/busan/view.php?code=2021102109013930899 (accessed on 10 November 2021).
- MOF. 1st Comprehensive Plan for Port Air Quality (2021~2025); Ministry of Oceans and Fisheries: Sejong, Korea, 2021; p. 48. Available online: https://www.mof.go.kr/en/page.do?menuIdx=1627 (accessed on 21 August 2021).
- MOF. Press Release: Construction of Onshore Power Supply Facilities (AMP) in 248 Berths by 2030, Ministry of Oceans and Fisheries. 2019. Available online: https://www.mof.go.kr/article/view.do?articleKey=28066&boardKey=10&menuKey=971¤tPageNo=1 (accessed on 21 August 2021).
- MOF. 3rd Master Plan for Marine and Fisheries Development (2021~2030); Report No. 11-1192000-001395-14; Ministry of Oceans and Fisheries: Sejong, Korea, 2021; p. 192. Available online: https://www.mof.go.kr/en/page.do?menuIdx=1626 (accessed on 21 August 2021).
- KMGL. Special Act on the Improvement of Air Quality in Port Areas, Korean Ministry of Government Legislation. 2019. Available online: https://www.law.go.kr/LSW/eng/engLsSc.do?menuId=2§ion=lawNm&query=port+air+quality&x=0&y=0#liBgcolor1 (accessed on 21 August 2021).
- Lee, M.W.; Lee, H.S. Estimation of ship emissions and environmental costs: Focusing on port of Busan. J. Korea Port Econ. Assoc. 2016, 32, 15–28. Available online: https://www.koreascience.or.kr/article/JAKO201617447410339.pdf (accessed on 21 August 2021).
- Chang, Y.-T.; Song, Y.; Roh, Y. Assessing greenhouse gas emissions from port vessel operations at the Port of Incheon. Transp. Res. Part D Transp. Environ. 2013, 25, 1–4. [Google Scholar] [CrossRef]
- Tichavska, M.; Tovar, B. Port-city exhaust emission model: An application to cruise and ferry operations in Las Palmas Port. Transp. Res. Part A Policy Pract. 2015, 78, 347–360. [Google Scholar] [CrossRef]
- Tichavska, M.; Tovar, B.; Gritsenko, D.; Johansson, L.; Jalkanen, J.-P. Air emissions from ships in port: Does regulation make a difference? Transp. Policy 2019, 75, 128–140. [Google Scholar] [CrossRef]
- KMI. A Study on the Systematic Management of Air Pollutants from Ships in Korea; Basic Research No. 2016.-09; Korea Maritime Institute: Seoul, Korea, 2016; p. 202. [Google Scholar]
- KMGL. Harbour Act, Article 89. Korean Ministry of Government Legislation. 2008. Available online: https://elaw.klri.re.kr/kor_service/lawView.do?hseq=46264&lang=ENG (accessed on 21 August 2021).
- MOF. Port-MIS, Ministry of Oceans and Fisheries. 2010. Available online: https://new.portmis.go.kr/portmis/websquare/websquare.jsp?w2xPath=/portmis/w2/main/intro.xml (accessed on 20 June 2021).
- Ready, R.; Navrud, S. International benefit transfer: Methods and validity tests. Ecol. Econ. 2006, 60, 429–434. [Google Scholar] [CrossRef]
- EMEP/EEA. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019: Technical Guidance to Prepare National Emission Inventories, Part B: Technical Chapters, 1.A Combustion, 1.A.3.d Navigation (Shipping). The Joint European Monitoring and Evaluation Programme/European Environment Agency. 2019. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019 (accessed on 21 August 2021).
- IMO. International Convention for the Prevention of Pollution from Ships (MARPOL), Annex VI. Consideration and Adoption of the Protocol of 1997 to Amend the MARPOL 1973 as Modified by the Protocol of 1978, MP/CONF.3/34. International Maritime Organization. 1997. Available online: http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Air-Pollution.aspx (accessed on 21 August 2021).
- Entec. UK Ship Emissions Inventory, Final Report. Entec. 2010. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat15/1012131459_21897_Final_Report_291110.pdf (accessed on 21 August 2021).
- Trozzi, C.; Vaccaro, R. Methodologies for estimating air pollutant emissions from ships. In Proceedings of the 2nd Environment & Transport Conference (including 15th Transport and Air Pollution conference), Reims, France, 12–14 June 1997. [Google Scholar]
- MOF. South Korea Implements 0.10% Sulphur Limit on Vessels at Anchorage or Mooring in Its Five Major ports, Ministry of Oceans and Fisheries. 2020. Available online: https://www.mof.go.kr/en/board.do?menuIdx=1491&bbsIdx=30636 (accessed on 20 June 2021).
- MOF. Port-MIS Ship Entry and Feparture, Ministry of Oceans and Fisheries. 2020. Available online: https://new.portmis.go.kr/portmis/websquare/websquare.jsp?w2xPath=/portmis/w2/main/intro.xml, (accessed on 20 June 2021).
- Balsdon, E.l.; Kolstad, C.D. Environmental Economics; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Maibach, M.; Schreyer, C.; Sutter, D.; Van Essen, H.P.; Boon, B.H.; Smokers, R.; Bak, M. Handbook on Estimation of External Costs in the Transport Sector; Ce Delft: Oude Delft, The Netherlands, 2008; p. 336. [Google Scholar]
- NASEM. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide; National Academies of Sciences, Engineering, and Medicine; National Academies Press: Washington, DC, USA, 2017. [Google Scholar]
- Essen, H.; van Wijngaarden, L.; Schroten, A.; Sutter, D.; Bieler, C.; Maffii, S.; El Beyrouty, K. Handbook on the External Costs of Transport; Ver. 2019, No. 18.4 K83.131; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Walker, T.R. Green Marine: An environmental program to establish sustainability in marine transportation. Mar. Pollut. Bull. 2016, 105, 199–207. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R.; Waterfield, T. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of, 1.5 °C. 2018. pp. 1–9. Available online: https://www.ipcc.ch/sr15/ (accessed on 21 August 2021).
- Freeman, A.M.; Herriges, J.A.; Kling, C.L. The Measurement of Environmental and Resource Values: Theory and Methods; Resources for the Future: Washington, DC, USA, 2003; Available online: http://econdse.org/wp-content/uploads/2016/07/Freeman-Herriges-Kling-2014.pdf (accessed on 21 August 2021).
- Haab, T.C.; McConnell, K.E. Valuing Environmental and Natural Resources: The Econometrics of Non-Market Valuation; Edward Elgar Publishing: Cheltenham, UK, 2002. [Google Scholar]
- Perman, R.; Ma, Y.; McGilvray, J.; Common, M. Natural Resource and Environmental Economics; Pearson Education: London, UK, 2003. [Google Scholar]
- Bergstrom, J.C.; Civita, P. Status of Benefits Transfer in the United States and Canada: Reply. Can. J. Agric. Econ. Can. d’Agroecon. 2001, 49, 263. [Google Scholar] [CrossRef]
- Peterson, L.G. A Primer on Nonmarket Valuation (Vol. 3); Champ, P.A., Boyle, K.J., Brown, T.C., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Gibson, M.; Carnovale, M. The effects of road pricing on driver behavior and air pollution. J. Urban Econ. 2015, 89, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Nurmi, V.; Ahtiainen, H. Distributional Weights in Environmental Valuation and Cost-benefit Analysis: Theory and Practice. Ecol. Econ. 2018, 150, 217–228. [Google Scholar] [CrossRef]
- Desvousges, W.H.; Naughton, M.C.; Parsons, G.R. Benefit transfer: Conceptual problems in estimating water quality benefits using existing studies. Water Resour. Res. 1992, 28, 675–683. [Google Scholar] [CrossRef] [Green Version]
- Piper, S.; Martin, W.E. Evaluating the accuracy of the benefit transfer method: A rural water supply application in the USA. J. Environ. Manag. 2001, 63, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Rosenberger, R.S.; Loomis, J.B. Panel Stratification in Meta-Analysis of Economic Studies: An Investigation of Its Effects in the Recreation Valuation Literature. J. Agric. Appl. Econ. 2000, 32, 459–470. [Google Scholar] [CrossRef]
- Gren, I.-M.; Brutemark, A.; Jägerbrand, A.K.; Svedén, J.B. Costs of air pollutants from shipping: A meta-regression analysis. Transp. Rev. 2020, 40, 411–428. [Google Scholar] [CrossRef]
- Tichavska, M.; Tovar, B. Environmental cost and eco-efficiency from vessel emissions in Las Palmas Port. Transp. Res. Part E Logist. Transp. Rev. 2015, 83, 126–140. [Google Scholar] [CrossRef]
- Tichavska, M.; Tovar, B. External costs from vessel emissions at port: A review of the methodological and empirical state of the art. Transp. Rev. 2017, 37, 383–402. [Google Scholar] [CrossRef] [Green Version]
- MOVE, D. Update of the Handbook on External Costs of Transport; RICADO-AEA Report for the European Commission: London, UK, 2014. [Google Scholar]
- Holland, M.; Watkiss, P. Benefits Table Database: Estimates of the Marginal External Costs of Air Pollution in Europe. 2002. Available online: http://ec.europa.eu/environment/enveco/air/pdf/betaec02aforprinting.pdf (accessed on 21 August 2021).
- Amann, M.; Bertok, I.; Cabala, R.; Cofala, J.; Heyes, C.; Gyarfas, F.; Wagner, F. A Final Set of Scenarios for the Clean Air for Europe (CAFE) Programme (CAFE Scenario Analysis Report Nr. 6). International Institute for Applied Systems Analysis (IIASA). 2005. Available online: https://www.researchgate.net/publication/237572697_A_final_set_of_scenarios_for_the_Clean_Air_For_Europe_CAFE_programme (accessed on 21 August 2021).
- Bickel, P.; Friedrich, R.; Burgess, A.; Fagiani, P.; Hunt, A.; Jong, G.D.; Tavasszy, L. HEATCO—Developing Harmonised European Approaches for Transport Costing and Project Assessment. IER University of Stuttgart. 2006. Available online: http://www.kbsz.hu/dokumentumok/20070411_0.2-HEATCO_D5.pdf (accessed on 21 August 2021).
- Preiss, P.; Klotz, V. Description of Updated and Extended Draft Tools for the Detailed Site-Dependent Assessment of External Costs. Technical Paper No. 7.4-RS1b of NEEDS Project. 2007. Available online: https://www.semanticscholar.org/paper/Technical-Paper-n-%C2%B0-7-.-4-RS-1-b-%E2%80%9C-Description-of-%E2%80%9D-Preiss-Klotz/b65899629b71962c36f0ffadac0c9ff71c55f157 (accessed on 5 April 2022).
- IPCC. IPCC Second Assessment. A Report of the Intergovernmental Panel on Climate Change, WMO-UNEP. 1995. Available online: https://www.ipcc.ch/site/assets/uploads/2018/05/2nd-assessment-en-1.pdf (accessed on 21 August 2021).
- KEI. Guidelines for Pre-Feasibility Study of Road and Railway Projects (5th Phase); Korea Environment Institute: Sejong, Korea, 2002; pp. 240–254. [Google Scholar]
- Lee, K.J.; Choi, K. Social Cost Comparison of Air-Quality based on Various Traffic Assignment Frameworks. J. Korean Soc. Civ. Eng. 2013, 33, 1087–1094. [Google Scholar] [CrossRef] [Green Version]
- Tol, R. The Economic Effects of Climate Change. J. Econ. Perspect. 2009, 23, 29–51. [Google Scholar] [CrossRef] [Green Version]
- KOSIS. Overall Household and Population Overview in Busan, Korean Statistical Information Service. 2021. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=202&tblId=DT_B1 (accessed on 10 November 2021).
- Wang, P.; Deng, X.; Zhou, H.; Yu, S. Estimates of the social cost of carbon: A review based on meta-analysis. J. Clean. Prod. 2018, 209, 1494–1507. [Google Scholar] [CrossRef]
- IWG. Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866; Technical Support Document; Interagency Working Group (IWG) on Social Cost of Carbon, United States Government: Washington, DC, USA, 2016. Available online: http://www.commerce.wa.gov/wp-content/uploads/2019/05/Social-Cost-CO2-Aug-16.pdf (accessed on 21 August 2021).
- Tovar, B.; Tichavska, M. Environmental cost and eco-efficiency from vessel emissions under diverse SOx regulatory frameworks: A special focus on passenger port hubs. Transp. Res. Part D Transp. Environ. 2019, 69, 1–12. [Google Scholar] [CrossRef]
Fuel Type 1 | Pollutants | ||||
---|---|---|---|---|---|
NOx 2 | SO2 | CO2 | VOC | PM 3 | |
MGO | 13.0 | 0.9 | 690 | 0.4 | 0.3 |
MDO | 13.0 | 6.5 | 690 | 0.4 | 0.4 |
Ship Type | ME Fuel | AE Fuel | 2010 World Fleet | ||
---|---|---|---|---|---|
ME Power [kW] | AE Ave. Number | AE/ME [%] | |||
Liquid bulk ships | MDO | MGO | 14.755 × GT0.6082 | 1.5 | 30 |
Dry bulk carriers | MDO | MGO | 35.912 × GT0.5276 | 1.5 | 30 |
Container | MDO | MDO | 2.9165 × GT0.8719 | 2 | 25 |
General cargo | MDO | MGO | 5.56482 × GT0.7425 | 1.5 | 23 |
Ro–Ro cargo | MDO | MDO | 164.578 × GT0.4350 | 1.5 | 24 |
Passenger | MDO | MDO | 9.55078 × GT0.7570 | 2 | 16 |
Fishing | MGO | MGO | 9.75891 × GT0.7527 | 1 | 39 |
Other | MGO | MGO | 59.0490 × GT0.5485 | 1 | 35 |
Tugs | MGO | MGO | 54.2171 × GT0.6420 | 1 | 10 |
Ship Activity | % Load of MCR for ME Operation | % of Electric Power from Shaft Generators | % Load of MCR for AE Operation |
---|---|---|---|
Hoteling | 20 | 0 | 40 (60 for tankers) |
Paper | Study Area | Data | Air Pollution Emission | Economic Valuation Method (EVM) | Study Type |
---|---|---|---|---|---|
KMI (2016) | Busan and Incheon region, Korea | Survey data in 2016 | Impact of all air pollutants on human health (not restricted to ships) | Conjoint Analysis | Primary Study |
Lee and Lee (2016) | Busan Port, Korea | 2011–2012 | CO, CO2, SO2, NOx, PM, HC, VOC | BTM, but not specified in study | Secondary Study |
Sea Area | VOC | NOx | SO2 | PM2.5 | PM10 |
---|---|---|---|---|---|
Atlantic Sea | 400 | 3500 | 3800 | 7200 | 4100 |
Baltic Sea | 1000 | 6900 | 7900 | 18,300 | 10,400 |
Black Sea | 200 | 11,100 | 7800 | 30,000 | 17,100 |
Mediterranean | 500 | 9200 | 3000 | 24,600 | 14,000 |
North Sea | 2300 | 10,500 | 10,700 | 34,400 | 19,700 |
Sea Area | VOC | NOx | SO2 | PM2.5 | PM10 2 | Remarks |
---|---|---|---|---|---|---|
Base Case (North Sea from NEEDS project) 1 | 1713 | 7968 | 7819 | 25,617 | 14,670 | Ship emissions at sea (offshore) |
SEC Case 1 (Urban from BeTa project) | 2100 | 4200 | 90,000 | 495,000 | 283,474 | Population Factors = 15 |
SEC Case 2 (North Sea from BeTa project) | 2600 | 3100 | 4300 | 9600 | 5498 | Ship emissions at sea (offshore) |
Study Site | EC of CO2 |
---|---|
EU-28 countries | EUR 100/ton in 2016 |
USA | USD 42/ton in 2020 (in 2007) |
Ship Type | Year | |||||
---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | 2019 | 2015–2019 (% by Ship Type) | |
Liquid bulk ships | 12,801 | 13,558 | 12,802 | 12,509 | 13,040 | 64,710 (26.4%) |
Dry bulk carriers | 1506 | 1612 | 1516 | 1335 | 1729 | 7698 (3.1%) |
Container | 15,091 | 15,324 | 15,516 | 15,223 | 14,720 | 75,874 (31.0%) |
General cargo | 6224 | 6344 | 6099 | 5682 | 5388 | 29,737 (12.1%) |
Ro–Ro cargo | 317 | 363 | 313 | 205 | 205 | 1403 (0.6%) |
Passenger | 3248 | 3636 | 3767 | 3910 | 3288 | 17,849 (7.3%) |
Fishing | 1123 | 1165 | 1400 | 1342 | 1389 | 6419 (2.6%) |
Other | 1038 | 1048 | 1095 | 904 | 935 | 5020 (2.1%) |
Tugs | 8280 | 7819 | 7254 | 6369 | 6435 | 36,157 (14.8%) |
Sum | 49,628 | 50,869 | 49,762 | 47,479 | 47,129 | 244,867 |
Ship Type | Year | ||||
---|---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | 2019 | |
Liquid bulk ships | 15,459,190 | 16,138,568 | 16,308,114 | 19,289,104 | 23,909,309 |
Dry bulk carriers | 28,065,888 | 33,988,474 | 33,667,341 | 29,663,711 | 36,304,420.34 |
Container | 502,993,471 | 515,447,303 | 537,537,814 | 556,552,624 | 555,320,490 |
General cargo | 34,235,272 | 33,616,413 | 31,756,653 | 29,934,034 | 28,217,042 |
Ro–Ro cargo | 12,621,833 | 16,756,854.2 | 14,593,470 | 9,646,058 | 9,012,494 |
Passenger | 23,852,279 | 39,652,707 | 26,268,168 | 23,577,180 | 25,023,793 |
Fishing | 1,292,181 | 1,483,812 | 1,799,833 | 1,682,768 | 1,755,471 |
Other | 2,677,187 | 2,133,649 | 1,607,409 | 1,962,064.72 | 1,867,217.55 |
Tugs | 1,049,521 | 978,447 | 781,481 | 710,408 | 667,735.55 |
Sum | 622,246,822 | 660,196,227.2 | 664,320,283 | 673,017,951.72 | 682,077,972.44 |
Ship Type | Pollutants | |||||
---|---|---|---|---|---|---|
NOx | SO2 | CO2 | VOC | PM2.5 | PM10 | |
Liquid bulk ships | 101,426.53 | 7021.84 | 5,383,408.12 | 3120.82 | 2106.55 | 2223.58 |
Dry bulk carriers | 34,823.42 | 2410.85 | 1,848,319.90 | 1071.49 | 723.26 | 763.44 |
Container | 942,372.10 | 471,186.05 | 50,018,211.42 | 28,996.06 | 26,096.46 | 27,546.26 |
General cargo | 77,918.78 | 5394.38 | 4,135,689.32 | 2397.50 | 1618.31 | 1708.22 |
Ro–Ro cargo | 7983.66 | 3991.83 | 423,747.94 | 245.65 | 221.09 | 233.37 |
Passenger | 23,630.97 | 11,815.48 | 1,254,259.12 | 727.11 | 654.40 | 690.75 |
Fishing | 108,944.00 | 7542.28 | 5,782,412.51 | 3352.12 | 2262.68 | 2388.39 |
Other | 48,805.21 | 3378.82 | 2,590,430.43 | 1501.70 | 1013.65 | 1069.96 |
Tugs | 16,102.75 | 1114.81 | 854,684.36 | 495.47 | 334.44 | 353.02 |
Sum | 1,362,007.42 | 513,856.33 | 72,291,163.12 | 41,907.92 | 35,030.83 | 36,976.99 |
Year | Pollutants | Annual Emissions | |||||
---|---|---|---|---|---|---|---|
NOx | SO2 | CO2 | VOC | PM2.5 | PM10 | ||
2015 | 1,321,308.81 | 472,625.89 | 70,131,006.09 | 40,655.66 | 33,568.20 | 35,433.10 | 72,034,597.75 |
2016 | 1,379,034.32 | 512,996.47 | 73,194,898.60 | 42,431.83 | 35,351.70 | 37,315.69 | 75,202,028.61 |
2017 | 1,294,310.87 | 480,544.03 | 68,698,038.32 | 39,824.95 | 33,164.77 | 35,007.26 | 70,580,890.19 |
2018 | 1,320,347.49 | 502,573.62 | 70,079,981.99 | 40,626.08 | 34,030.61 | 35,921.20 | 72,013,480.99 |
2019 | 1,362,007.42 | 513,856.33 | 72,291,163.12 | 41,907.92 | 35,030.83 | 36,976.99 | 74,280,942.62 |
(Yearly mean) | (1,335,401.78) | (496,519.27) | (70,879,017.63) | (41,089.29) | (34,229.22) | (36,130.85) | (72,822,388.03) |
Sum by pollutant (%) | 6,677,008.91 (1.83%) | 2,482,596.34 (0.68%) | 354,395,088.13 (97.33%) | 205,446.43 (0.06%) | 171,146.12 (0.05%) | 180,654.24 (0.05%) | 364,111,940.16 |
Air Pollutants | NMVOC | NOx | SO2 | PM2.5 | PM10 | CO2 | |
---|---|---|---|---|---|---|---|
EU-28 | USA | ||||||
Base Case | 2.48 | 11.55 | 11.33 | 37.13 | 21.26 | 0.11 | 0.04 |
SEC Case 1 | 2.44 | 4.88 | 104.61 | 575.34 | 329.48 | 0.11 | 0.04 |
SEC Case 2 | 3.02 | 3.60 | 5.00 | 11.16 | 6.39 | 0.11 | 0.04 |
Year | Cases | Pollutants | Total | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|
NOx | SO2 | CO2_EU 1 | CO2_US | VOC | PM2.5 | PM10 | (EU) | (USA) | ||
2015 | Base Case | 14.35 | 5.04 | 7.12 | 2.59 | 0.09 | 1.17 | 0.71 | 28.49 | 23.95 |
SEC Case 1 | 6.07 | 46.51 | 7.12 | 2.59 | 0.09 | 18.17 | 10.98 | 88.94 | 84.40 | |
SEC Case 2 | 4.48 | 2.22 | 7.12 | 2.59 | 0.12 | 0.35 | 0.21 | 14.50 | 9.97 | |
2016 | Base Case | 14.69 | 5.36 | 7.28 | 2.64 | 0.10 | 1.21 | 0.73 | 29.37 | 24.73 |
SEC Case 1 | 6.21 | 49.48 | 7.28 | 2.64 | 0.10 | 18.75 | 11.34 | 93.16 | 88.52 | |
SEC Case 2 | 4.58 | 2.36 | 7.28 | 2.64 | 0.12 | 0.36 | 0.22 | 14.93 | 10.29 | |
2017 | Base Case | 15.85 | 5.78 | 7.86 | 2.85 | 0.10 | 1.31 | 0.79 | 31.69 | 26.68 |
SEC Case 1 | 6.70 | 53.31 | 7.86 | 2.85 | 0.10 | 20.23 | 12.23 | 100.44 | 95.43 | |
SEC Case 2 | 4.95 | 2.55 | 7.86 | 2.85 | 0.13 | 0.39 | 0.24 | 16.11 | 11.10 | |
2018 | Base Case | 15.74 | 5.88 | 7.81 | 2.84 | 0.10 | 1.30 | 0.79 | 31.63 | 26.66 |
SEC Case 1 | 6.66 | 54.28 | 7.81 | 2.84 | 0.10 | 20.22 | 12.22 | 101.29 | 96.31 | |
SEC Case 2 | 4.91 | 2.59 | 7.81 | 2.84 | 0.13 | 0.39 | 0.24 | 16.07 | 11.10 | |
2019 | Base Case | 15.73 | 5.82 | 7.80 | 2.83 | 0.10 | 1.30 | 0.79 | 31.55 | 26.58 |
SEC Case 1 | 6.65 | 53.75 | 7.80 | 2.83 | 0.10 | 20.15 | 12.18 | 100.64 | 95.68 | |
SEC Case 2 | 4.91 | 2.57 | 7.80 | 2.83 | 0.13 | 0.39 | 0.24 | 16.03 | 11.06 |
Research | Year | Yearly Social Environmental Cost | Remarks |
---|---|---|---|
KMI (2016) | 2019 | USD 30.16 | Estimating economic benefits of reducing health damage caused by air pollution from ship emissions by 10% |
Lee and Lee (2016) | 2011 | USD 1055.02 | Estimating environmental costs of ship-emitting air pollutants: NOx, SO2, CO, CO2, PM, HC, and VOC |
Base Case | 2019 | USD 31.55 | Estimating environmental costs of ship emission pollutants during hoteling at Busan Port using Port-MIS open data |
SEC Case 1 | USD 100.64 | ||
SEC Case 2 | USD 16.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, Y.; Moon, B.; Kim, T.-G. Estimation of Pollutant Emissions and Environmental Costs Caused by Ships at Port: A Case Study of Busan Port. J. Mar. Sci. Eng. 2022, 10, 648. https://doi.org/10.3390/jmse10050648
Yoo Y, Moon B, Kim T-G. Estimation of Pollutant Emissions and Environmental Costs Caused by Ships at Port: A Case Study of Busan Port. Journal of Marine Science and Engineering. 2022; 10(5):648. https://doi.org/10.3390/jmse10050648
Chicago/Turabian StyleYoo, Yunja, Beomsik Moon, and Tae-Goun Kim. 2022. "Estimation of Pollutant Emissions and Environmental Costs Caused by Ships at Port: A Case Study of Busan Port" Journal of Marine Science and Engineering 10, no. 5: 648. https://doi.org/10.3390/jmse10050648
APA StyleYoo, Y., Moon, B., & Kim, T.-G. (2022). Estimation of Pollutant Emissions and Environmental Costs Caused by Ships at Port: A Case Study of Busan Port. Journal of Marine Science and Engineering, 10(5), 648. https://doi.org/10.3390/jmse10050648