Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Future Internet  /  Vol: 11 Par: 12 (2019)  /  Artículo
ARTÍCULO
TITULO

Reinforcement Learning Based Query Routing Approach for P2P Systems

Fawaz Alanazi and Taoufik Yeferny    

Resumen

Peer-to-peer (P2P) systems have offered users an efficient way to share various resources and access diverse services over the Internet. In unstructured P2P systems, resource storage and indexation are fully distributed among participating peers. Therefore, locating peers sharing pertinent resources for a specific user query is a challenging issue. In fact, effective query routing requires smart decisions to select a certain number of peers with respect to their relevance for the query instead of choosing them at random. In this respect, we introduce here a new query-oriented approach, called the reinforcement learning-based query routing approach (RLQR). The main goal of RLQR is to reach high retrieval effectiveness as well as a lower search cost by reducing the number of exchanged messages and contacted peers. To achieve this, the RLQR relies on information gathered from previously sent queries to identify relevant peers for forthcoming queries. Indeed, we formulate the query routing issue as the reinforcement learning problem and introduce a fully distributed approach for addressing it. In addition, RLQR addresses the well-known cold-start issue during the training stage, which allows it to improve its retrieval effectiveness and search cost continuously, and, therefore, goes quickly through the cold-start phase. Performed simulations demonstrate that RLQR outperforms pioneering query routing approaches in terms of retrieval effectiveness and communications cost.

 Artículos similares

       
 
Chen Zhang, Celimuge Wu, Min Lin, Yangfei Lin and William Liu    
In the advanced 5G and beyond networks, multi-access edge computing (MEC) is increasingly recognized as a promising technology, offering the dual advantages of reducing energy utilization in cloud data centers while catering to the demands for reliabilit... ver más
Revista: Future Internet

 
Tamim Mahmud Al-Hasan, Aya Nabil Sayed, Faycal Bensaali, Yassine Himeur, Iraklis Varlamis and George Dimitrakopoulos    
Recommender systems are a key technology for many applications, such as e-commerce, streaming media, and social media. Traditional recommender systems rely on collaborative filtering or content-based filtering to make recommendations. However, these appr... ver más

 
Aristeidis Karras, Anastasios Giannaros, Christos Karras, Leonidas Theodorakopoulos, Constantinos S. Mammassis, George A. Krimpas and Spyros Sioutas    
In the context of the Internet of Things (IoT), Tiny Machine Learning (TinyML) and Big Data, enhanced by Edge Artificial Intelligence, are essential for effectively managing the extensive data produced by numerous connected devices. Our study introduces ... ver más
Revista: Future Internet

 
Tongyang Xu, Yuan Liu, Zhaotai Ma, Yiqiang Huang and Peng Liu    
As a new distributed machine learning (ML) approach, federated learning (FL) shows great potential to preserve data privacy by enabling distributed data owners to collaboratively build a global model without sharing their raw data. However, the heterogen... ver más
Revista: Future Internet

 
Teguh Indra Bayu, Yung-Fa Huang and Jeang-Kuo Chen    
The modulation coding scheme (MCS) index is the essential configuration parameter in cellular vehicle-to-everything (C-V2X) communication. As referenced by the 3rd Generation Partnership Project (3GPP), the MCS index will dictate the transport block size... ver más
Revista: Future Internet