Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 2 (2020)  /  Artículo
ARTÍCULO
TITULO

A Method for Detecting Coffee Leaf Rust through Wireless Sensor Networks, Remote Sensing, and Deep Learning: Case Study of the Caturra Variety in Colombia

David Velásquez    
Alejandro Sánchez     
Sebastian Sarmiento     
Mauricio Toro     
Mikel Maiza and Basilio Sierra    

Resumen

Agricultural activity has always been threatened by the presence of pests and diseases that prevent the proper development of crops and negatively affect the economy of farmers. One of these pests is Coffee Leaf Rust (CLR), which is a fungal epidemic disease that affects coffee trees and causes massive defoliation. As an example, this disease has been affecting coffee trees in Colombia (the third largest producer of coffee worldwide) since the 1980s, leading to devastating losses between 70% and 80% of the harvest. Failure to detect pathogens at an early stage can result in infestations that cause massive destruction of plantations and significantly damage the commercial value of the products. The most common way to detect this disease is by walking through the crop and performing a human visual inspection. As a result of this problem, different research studies have proven that technological methods can help to identify these pathogens. Our contribution is an experiment that includes a CLR development stage diagnostic model in the Coffea arabica, Caturra variety, scale crop through the technological integration of remote sensing (through drone capable multispectral cameras), wireless sensor networks (multisensor approach), and Deep Learning (DL) techniques. Our diagnostic model achieved an F1-score of 0.775. The analysis of the results revealed a p-value of 0.231, which indicated that the difference between the disease diagnosis made employing a visual inspection and through the proposed technological integration was not statistically significant. The above shows that both methods were significantly similar to diagnose the disease.

 Artículos similares

       
 
JongBae Kim    
This technology can prevent accidents involving large vehicles, such as trucks or buses, by selecting an optimal driving lane for safe autonomous driving. This paper proposes a method for detecting forward-driving vehicles within road images obtained fro... ver más
Revista: Applied Sciences

 
Jin-Woo Kong, Byoung-Doo Oh, Chulho Kim and Yu-Seop Kim    
Intracerebral hemorrhage (ICH) is a severe cerebrovascular disorder that poses a life-threatening risk, necessitating swift diagnosis and treatment. While CT scans are the most effective diagnostic tool for detecting cerebral hemorrhage, their interpreta... ver más
Revista: Applied Sciences

 
Julio-Alejandro Romero-González, Diana-Margarita Córdova-Esparza, Juan Terven, Ana-Marcela Herrera-Navarro and Hugo Jiménez-Hernández    
This paper introduces a novel background subtraction method that utilizes texture-level analysis based on the Gabor filter bank and statistical moments. The method addresses the challenge of accurately detecting moving objects that exhibit similar color ... ver más
Revista: Algorithms

 
Liqiu Chen, Chongshi Gu, Sen Zheng and Yanbo Wang    
Real and effective monitoring data are crucial in assessing the structural safety of dams. Gross errors, resulting from manual mismeasurement, instrument failure, or other factors, can significantly impact the evaluation process. It is imperative to elim... ver más
Revista: Water

 
Tatsuhito Hasegawa and Daichi Nakano    
Resource management for fisheries plays a pivotal role in fostering a sustainable fisheries industry. In Japan, resource surveys rely on manual measurements by staff, incurring high costs and limitations on the number of feasible measurements. This study... ver más