Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 14 (2023)  /  Artículo
ARTÍCULO
TITULO

Using Ensemble OCT-Derived Features beyond Intensity Features for Enhanced Stargardt Atrophy Prediction with Deep Learning

Zubin Mishra    
Ziyuan Wang    
SriniVas R. Sadda and Zhihong Hu    

Resumen

This study shows promising results for the development of artificial intelligence tools for the predicting of the progression of Stargardt disease. It further offers the possibility of differentiating patients with Stargardt disease based on predicted progression rate which may be a new approach to phenotypic differentiation or classification that may be useful in clinical decision-making.

 Artículos similares

       
 
Falah Amer Abdulazeez, Ismail Taha Ahmed and Baraa Tareq Hammad    
A significant quantity of malware is created on purpose every day. Users of smartphones and computer networks now mostly worry about malware. These days, malware detection is a major concern in the cybersecurity area. Several factors can impact malware d... ver más
Revista: Applied Sciences

 
Bahaa Yamany, Mahmoud Said Elsayed, Anca D. Jurcut, Nashwa Abdelbaki and Marianne A. Azer    
Ransomware is a type of malicious software that encrypts a victim?s files and demands payment in exchange for the decryption key. It is a rapidly growing and evolving threat that has caused significant damage and disruption to individuals and organizatio... ver más
Revista: Information

 
Syed Safdar Hussain and Syed Sajjad Haider Zaidi    
This study introduces a novel predictive methodology for diagnosing and predicting gear problems in DC motors. Leveraging AdaBoost with weak classifiers and regressors, the diagnostic aspect categorizes the machine?s current operational state by analyzin... ver más
Revista: Applied Sciences

 
Lin Guo, Anand Balu Nellippallil, Warren F. Smith, Janet K. Allen and Farrokh Mistree    
When dealing with engineering design problems, designers often encounter nonlinear and nonconvex features, multiple objectives, coupled decision making, and various levels of fidelity of sub-systems. To realize the design with limited computational resou... ver más
Revista: Algorithms

 
Iqbal Muhammad Zubair, Yung-Seop Lee and Byunghoon Kim    
The selection of group features is a critical aspect in reducing model complexity by choosing the most essential group features, while eliminating the less significant ones. The existing group feature selection methods select a set of important group fea... ver más
Revista: Applied Sciences