Redirigiendo al acceso original de articulo en 20 segundos...
ARTÍCULO
TITULO

Objective Prediction Tracking Control Technology Assisted by Inertial Information

Yue Leng and Sheng Zhong    

Resumen

This paper addresses the challenge of reduced tracking accuracy in maritime electro-optical tracking equipment when dealing with high-mobility targets like speedboats and aircraft due to off-target error delays. We propose an innovative technique that leverages inertial navigation data to enhance target prediction and tracking control. Our approach involves the real-time integration of high-frequency inertial navigation-derived attitude information into the tracking system. By combining off-target error information with angular measurements from the tracking mechanism, we project the vector of the tracked target into multiple coordinate systems, including the imaging coordinate system, carrier coordinate system, and geographic coordinate system. Subsequently, we model and predict the target?s motion trajectory in the relatively slow-changing geographic coordinate system. This transformation process increases the update frequency and real-time performance of the tracking control position loop command angle. Unlike traditional control methods that heavily rely on the model of the controlled object, our approach significantly improves tracking accuracy and engineering applicability. It offers a technology-based optimization of tracking and control performance through an interdisciplinary theoretical fusion, deeply integrating inertial navigation technology with tracking control technology. Experimental results with maritime electro-optical tracking equipment demonstrate that our proposed control technique increases tracking accuracy for high-speed targets by approximately threefold compared to traditional methods. Under the same experimental conditions, the off-target error statistics are reduced from 1.8 mrad to 633 µrad.