Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

Numerical Investigation of the Semi-Active Flapping Foil of the Wave Glider

Zhanfeng Qi    
Bo Zou    
Huiqiang Lu    
Jian Shi    
Guofu Li    
Yufeng Qin and Jingsheng Zhai    

Resumen

A numerical investigation is conducted to study the propulsive performance of the semi-active flapping foil of the wave glider, where the heaving smotion is fully prescribed, and the pitching motion is determined by the hydrodynamic force and torsion spring. A mesh for two-dimensional NACA0012 foil with the Reynolds number Re = 42000 is produced, and a dynamic mesh and sliding interface are used in the computation. The influences of reduced frequency, spring stiffness, and critical pitching amplitude on the hydrodynamic characteristics of semi-active flapping foil are systematically investigated. We find that there is a critical reduced frequency: When the reduced frequency is lower than the critical value, the propulsive performance of flapping foil can be improved exponentially, and when the reduced frequency is higher than the critical value, the semi-active flapping foil cannot provide an effective thrust. For a greater reduced frequency, there is an optimal spring stiffness value, which corresponds to the maximum value of the output power coefficient. For a lower reduced frequency, the mean value of the output power coefficient monotonically decreases as the spring stiffness increases. We also notice that the propulsive efficiency of flapping foil monotonically decreases as the spring stiffness increases. Finally, we find that the appropriate critical pitching amplitude can improve the propulsive performance of semi-active flapping foil, especially for greater heaving amplitudes.

 Artículos similares

       
 
Wenjie Shen, Suofang Wang, Mengyuan Wang, Jia Suo and Zhao Zhang    
Improving airflow pressure is of great significance for the cooling and sealing of aeroengines. In a co-rotating cavity with radial inflow, vortex reducers are used to decrease the pressure drop. However, the performance of traditional vortex reducers is... ver más
Revista: Aerospace

 
Panagiotis D. Kordas, George N. Lampeas and Konstantinos T. Fotopoulos    
The main purpose of this study comprises the design and the development of a novel experimental configuration for carrying out tests on a full-scale stiffened panel manufactured of fiber-reinforced thermoplastic material. Two different test-bench design ... ver más
Revista: Aerospace

 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Shuang Ruan, Ming Zhang, Shaofei Yang, Xiaohang Hu and Hong Nie    
A dynamic model is established to investigate the shimmy instability of a landing gear system, considering the influence of nonlinear damping. The stability criterion is utilized to determine the critical speed at which the landing gear system becomes un... ver más
Revista: Aerospace

 
Mengxiang Li, Guo Wang, Kun Liu, Yue Lu and Jiaxia Wang    
The safety assessment of ship cargo securing systems is of significant importance in preventing casualties, vessel instability, and economic losses resulting from the failure of securing systems during transportation in adverse sea conditions. In this st... ver más