Resumen
It is a common phenomenon in real life that individuals have diverse member relationships in different social clusters, which is called overlap in the science of network. Detecting overlapping components of the community structure in a network has extensive value in real-life applications. The mainstream algorithms for community detection generally focus on optimization of a global or local static metric. These algorithms are often not good when the community characteristics are diverse. In addition, there is a lot of randomness in the process of the algorithm. We proposed a algorithm combining local expansion and label propagation. In the stage of local expansion, the seed is determined by the node pair with the largest closeness, and the rule of expansion also depends on closeness. Local expansion is just to obtain the center of expected communities instead of final communities, and these immature communities leave only dense regions after pruning according to certain rules. Taking the dense regions as the source makes the label propagation reach stability rapidly in the early propagation so that the final communities are detected more accurately. The experiments in synthetic and real-world networks proved that our algorithm is more effective not only on the whole, but also at the level of the node. In addition, it is stable in the face of different network structures and can maintain high accuracy.