Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 24 (2023)  /  Artículo
ARTÍCULO
TITULO

Finite Element Model of Scoliosis Brace with Increased Utility Characteristics

Slawomir Grycuk and Piotr Mrozek    

Resumen

Orthoses are of critical importance in the field of medical biomechanics, particularly in the correction of spinal deformities. The objective of the current research was to improve the utility characteristics of the scoliosis brace without compromising its corrective capabilities. The orthotic shell of the Boston brace was used as the basis for this investigation. The finite element method (FEM) was used to evaluate the distribution of corrective forces through the device. The flow of force lines within the orthotic shell was determined by mapping the paths of maximum principal stresses. Areas of the device that had a negligible effect on overall stiffness were identified and material from these areas was eliminated. Minor modifications were then made to the redesigned shell to maintain its corrective stiffness. As a result of these changes, the weight of the braces was reduced without compromising its corrective stiffness. When subjected to corrective forces, the shell?s displacement patterns in the transverse plane showed minimal changes from the original model, confirming that its corrective capacity remained largely intact. This research presents an innovative methodology for orthotic design and demonstrates that structural optimization based on the mapping of maximum principal stress pathways can significantly improve device functionality. The approach outlined here holds promise for future advances in the design of various orthotic devices, thereby contributing to the advancement of the field.

 Artículos similares

       
 
George Tzoumakis, Konstantinos Fotopoulos and George Lampeas    
Future liquid hydrogen-powered aircraft requires the design and optimization of a large number of systems and subsystems, with cryogenic tanks being one of the largest and most critical. Considering previous space applications, these tanks are usually st... ver más
Revista: Aerospace

 
Grigorios Kostopoulos, Konstantinos Stamoulis, Vaios Lappas and Stelios K. Georgantzinos    
This study explores the shape-morphing behavior of 4D-printed structures made from Polylactic Acid (PLA), a prominent bio-sourced shape-memory polymer. Focusing on the response of these structures to thermal stimuli, this research investigates how variou... ver más
Revista: Aerospace

 
Long Li, Yiming Peng, Yifeng Wang, Xiaohui Wei and Hong Nie    
Arresting gear systems play a vital role in carrier-based aircraft landing. In order to accurately understand the process of arresting hook and cable, this study introduces a parameter inversion method to model the arresting cable and applies it to the t... ver más
Revista: Aerospace

 
Mark A. Denisenko, Alina S. Isaeva, Alexander S. Sinyukin and Andrey V. Kovalev    
The fast, convenient, and accurate determination of railroad cars? load mass is critical to ensure safety and allow asset counting in railway infrastructure. In this paper, we propose a method for modeling the mechanical deformations that occur in the ra... ver más
Revista: Infrastructures

 
Litan Pan, Bo Wu, Daquan Wang, Xiongxiong Zhou, Lijie Wang and Yi Zhang    
In the numerical simulation of earth-rock dam, accurate and reliable mechanical parameters of the dam material are the important basis for dam deformation predictions and dam safety evaluations. Based on the deformation monitoring data of Luding core wal... ver más
Revista: Water