Resumen
Previous studies on sugarcane harvester extractors have mainly focused on improving harvest quality and reducing the impurity rate and loss rate, which often ignored the issue of high energy consumption. To reduce the energy consumption of the extractor while maintaining the original impurity rate and loss rate stable, firstly, a blade element analysis method with aerodynamic theory was put forward to analyze the stress of the extractor blade, and the energy consumption equation and influencing factors of extraction were obtained. Subsequently, the computational fluid dynamics model of the exhaust extractor was established. Computational fluid dynamics (CFD) and the SST k-? model were used to analyze the mechanism of various influencing factors on the energy consumption and internal flow characteristics of the extractor. The changes in various parameters were analyzed and discussed with respect to the resulting variations in internal pressure, velocity, vortex structure, and lift?drag coefficient of the extractor. A test bench of the extractor was built, and orthogonal tests were carried out with energy consumption, impurity rate, and loss rate as test indicators. Considering the results of the simulation and bench test comprehensively, the combination of a rotational speed of 1450 RPM, a blade number of 3, an installation angle of 25°, and a blade chord length of 200 mm was optimal for the extractor. Finally, a comparative test was carried out between the optimized extractor and the original extractor. The results demonstrated that the energy consumption of the optimized extractor was reduced by 15.49%. The impurity rate decreased by 3.51%, and the loss rate decreased by 12.39% compared to the original extractor. The study can provide a theoretical and experimental basis for designing and optimizing extractor performance.