Resumen
A slope unit is commonly used as calculation unit for regional landslide analysis. However, the capacity of the slope unit to reflect the geomorphological features of actual landslides still needs to be verified. This is because such accurate representation is critical to ensure the physical meaning of results from subsequent landslide stability analysis. This paper presents work conducted on landslides and slope extraction in two areas in China: The Jiangjia Gully area (Yunnan Province) and Fengjie County (Chongqing Municipality). Ground-based light detection and ranging (LiDAR) data are combined with field landslide terrace measurements to allow for the comparison of slope unit extraction methods (conventional vs. MIA-HSU) in terms of their ability to reflect the geomorphological features of shallow and deep-seated landslides. The results indicate that slope unit boundaries extracted by the conventional method do not match the geomorphological variations of actual landslides, and the method is therefore deficient in meaningfully extracting slope units for further landslide analysis. By contrast, slope units obtained using the MIA-HSU method accurately reflects the geomorphological features of both shallow and deep-seated landslides, and thus provides clearer geomorphological meaning and more reasonable calculation units for regional landslide assessment and prediction.