Resumen
Virtual analog modeling of audio effects consists of emulating the sound of an audio processor reference device. This digital simulation is normally done by designing mathematical models of these systems. It is often difficult because it seeks to accurately model all components within the effect unit, which usually contains various nonlinearities and time-varying components. Most existing methods for audio effects modeling are either simplified or optimized to a very specific circuit or type of audio effect and cannot be efficiently translated to other types of audio effects. Recently, deep neural networks have been explored as black-box modeling strategies to solve this task, i.e., by using only input?output measurements. We analyse different state-of-the-art deep learning models based on convolutional and recurrent neural networks, feedforward WaveNet architectures and we also introduce a new model based on the combination of the aforementioned models. Through objective perceptual-based metrics and subjective listening tests we explore the performance of these models when modeling various analog audio effects. Thus, we show virtual analog models of nonlinear effects, such as a tube preamplifier; nonlinear effects with memory, such as a transistor-based limiter and nonlinear time-varying effects, such as the rotating horn and rotating woofer of a Leslie speaker cabinet.