Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Agriculture  /  Vol: 13 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

Prediction Model of Pigsty Temperature Based on ISSA-LSSVM

Yuqing Zhang    
Weijian Zhang    
Chengxuan Wu    
Fengwu Zhu and Zhida Li    

Resumen

The internal temperature of the pigsty has a great impact on the pigs. Keeping the temperature in the pigsty within a certain range is a pressing problem in environmental control. The current pigsty temperature regulation method is based mainly on manual and simple automatic control. There is rarely intelligent control, and such direct methods have problems such as low control accuracy, high energy consumption and untimeliness, which can easily lead to the occurrence of heat stress conditions. Therefore, this paper proposed an improved sparrow search algorithm (ISSA) based on a multi-strategy improvement to optimize the least squares support vector machine (LSSVM) to form a pigsty temperature prediction model. In the optimization process of the sparrow search algorithm (SSA), the initial position of the sparrow population was first generated by using the reverse good point set; secondly, the population number update formula was proposed to automatically adjust the number of discoverers and followers based on the number of iterations to improve the search ability of the algorithm; finally, the adaptive t-distribution was applied to the discoverer position variation to refine the discoverer population and further improve the search ability of the algorithm. Tests were conducted using 23 benchmark functions, and the results showed that ISSA outperformed SSA. By comparing it with the LSSVM models optimized by four standard algorithms, the prediction effect of the ISSA-LSSVM model was tested. In the end, the ISSA-LSSVM temperature prediction model had MSE of 0.0766, MAE of 0.2105, and R2 of 0.9818. The results showed that the proposed prediction model had the best prediction performance and prediction accuracy, and can provide accurate data support for the prediction and control of the internal temperature of the pigsty.

 Artículos similares

       
 
Haixia Jin, Jingjing Peng, Rutian Bi, Huiwen Tian, Hongfen Zhu and Haoxi Ding    
Mapping soil organic carbon (SOC) accurately is essential for sustainable soil resource management. Hyperspectral data, a vital tool for SOC mapping, is obtained through both laboratory and satellite-based sources. While laboratory data is limited to sam... ver más
Revista: Agronomy

 
Zhiqing Guo, Xiaohui Chen, Ming Li, Yucheng Chi and Dongyuan Shi    
Peanut leaf spot is a worldwide disease whose prevalence poses a major threat to peanut yield and quality, and accurate prediction models are urgently needed for timely disease management. In this study, we proposed a novel peanut leaf spot prediction me... ver más
Revista: Agronomy

 
Li Sun, Jingfa Yao, Hongbo Cao, Haijiang Chen and Guifa Teng    
In agricultural production, rapid and accurate detection of peach blossom bloom plays a crucial role in yield prediction, and is the foundation for automatic thinning. The currently available manual operation-based detection and counting methods are extr... ver más
Revista: Agriculture

 
Xiaobin Mou, Fangxin Wan, Jinfeng Wu, Qi Luo, Shanglong Xin, Guojun Ma, Xiaoliang Zhou, Xiaopeng Huang and Lizeng Peng    
To enhance the utilization of seed-used watermelon peel and mitigate environmental pollution, a hammer-blade seed-used watermelon peel crusher was designed and manufactured, and its structure and working parameters were optimized. Initially, the seed-use... ver más
Revista: Agriculture

 
Yuanyuan Shao, Shengheng Ji, Guantao Xuan, Yanyun Ren, Wenjie Feng, Huijie Jia, Qiuyun Wang and Shuguo He    
The objective is to develop a portable device capable of promptly identifying root rot in the field. This study employs hyperspectral imaging technology to detect root rot by analyzing spectral variations in chili pepper leaves during times of health, in... ver más
Revista: Agronomy