Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Algorithms  /  Vol: 16 Par: 1 (2023)  /  Artículo
ARTÍCULO
TITULO

Deep Reinforcement Learning-Based Dynamic Pricing for Parking Solutions

Li Zhe Poh    
Tee Connie    
Thian Song Ong and Michael Kah Ong Goh    

Resumen

The growth in the number of automobiles in metropolitan areas has drawn attention to the need for more efficient carpark control in public spaces such as healthcare, retail stores, and office blocks. In this research, dynamic pricing is integrated with real-time parking data to optimise parking utilisation and reduce traffic jams. Dynamic pricing is the practice of changing the price of a product or service in response to market trends. This approach has the potential to manage car traffic in the parking space during peak and off-peak hours. The dynamic pricing method can set the parking fee at a greater price during peak hours and a lower rate during off-peak times. A method called deep reinforcement learning-based dynamic pricing (DRL-DP) is proposed in this paper. Dynamic pricing is separated into episodes and shifted back and forth on an hourly basis. Parking utilisation rates and profits are viewed as incentives for pricing control. The simulation output illustrates that the proposed solution is credible and effective under circumstances where the parking market around the parking area is competitive among each parking provider.

 Artículos similares

       
 
Zheng Li, Xinkai Chen, Jiaqing Fu, Ning Xie and Tingting Zhao    
With the development of electronic game technology, the content of electronic games presents a larger number of units, richer unit attributes, more complex game mechanisms, and more diverse team strategies. Multi-agent deep reinforcement learning shines ... ver más
Revista: Algorithms

 
Bohdan Petryshyn, Serhii Postupaiev, Soufiane Ben Bari and Armantas Ostreika    
The development of autonomous driving models through reinforcement learning has gained significant traction. However, developing obstacle avoidance systems remains a challenge. Specifically, optimising path completion times while navigating obstacles is ... ver más
Revista: Information

 
Bowen Xing, Xiao Wang and Zhenchong Liu    
The path planning strategy of deep-sea mining vehicles is an important factor affecting the efficiency of deep-sea mining missions. However, the current traditional path planning algorithms suffer from hose entanglement problems and small coverage in the... ver más

 
Eyad K. Sayhood, Nisreen S. Mohammed, Salam J. Hilo and Salih S. Salih    
This paper presents comprehensive empirical equations to predict the shear strength capacity of reinforced concrete deep beams, with a focus on improving the accuracy of existing codes. Analyzing 198 deep beams imported from 15 existing investigations, t... ver más
Revista: Infrastructures

 
Juyao Wei, Zhenggang Lu, Zheng Yin and Zhipeng Jing    
This paper presents a novel data-driven multiagent reinforcement learning (MARL) controller for enhancing the running stability of independently rotating wheels (IRW) and reducing wheel?rail wear. We base our active guidance controller on the multiagent ... ver más
Revista: Applied Sciences