Resumen
Curved channels and aquatic vegetation are commonly present in the riverine environment. In this study, the effects of vegetation density and distribution on the hydrodynamic characteristics of a mixed layer developed over a 180-degree curved channel were investigated through flume experiments. Wooden sticks were used to simulate rigid vegetation distributed along the half side of the channel, and a 200 Hz acoustic Doppler velocimeter (ADV) was employed to measure the three-dimensional instantaneous velocity at five selected cross sections along the curved channel. Experimental results show that the vegetation covering the half of the channel significantly affects the hydrodynamic structure of the curved channel flow, and the unequal vegetation resistance induces the K-H instability at the vegetation and non-vegetation interface, resulting in a standard hyperbolic tangent function of streamwise velocity distribution along the lateral direction. The influence of curve position on turbulence kinetic energy is far greater than that of vegetation density and vegetation distribution. The peak value of turbulent kinetic energy is comprehensively affected by vegetation density and distribution, and the peak position of turbulent kinetic energy at the interface is changed by different vegetation distribution. The combined effect of the curve and the partly covered vegetation increases the mixing between the water bodies, enhancing turbulent kinetic energy, and vegetation along the concave bank plays a more significant role. For turbulent bursting, the inward and outward interactions are mainly bursting events in the vegetation area, while ejections and sweeps are dominant in the non-vegetation area. However, the critical vegetation condition to initiate large-scale coherent structure (LSS) in the mixed layer and the influence of flexible vegetation need to be further studied in the future.