Redirigiendo al acceso original de articulo en 15 segundos...
ARTÍCULO
TITULO

An Approach to Accurate Ship Image Recognition in a Complex Maritime Transportation Environment

Meng Yu    
Shaojie Han    
Tengfei Wang and Haiyan Wang    

Resumen

In order to monitor traffic in congested waters, permanent video stations are now commonly used on interior riverbank bases. It is frequently challenging to identify ships properly and effectively in such images because of the intricate backdrop scenery and overlap between ships brought on by the fixed camera location. This work proposes Ship R-CNN(SR-CNN), a Faster R-CNN-based ship target identification algorithm with improved feature fusion and non-maximum suppression (NMS). The SR-CNN approach can produce more accurate target prediction frames for prediction frames with distance intersection over union (DIOU) larger than a specific threshold in the same class weighted by confidence scores, which can enhance the model?s detection ability in ship-dense conditions. The SR-CNN approach in NMS replaces the intersection over union (IOU) filtering criterion, which solely takes into account the overlap of prediction frames, while DIOU, also takes into account the centroid distance. The screening procedure in NMS, which is based on a greedy method, is then improved by the SR-CNN technique by including a confidence decay function. In order to generate more precise target prediction frames and enhance the model?s detection performance in ship-dense scenarios, the proposed SR-CNN technique weights prediction frames in the same class with DIOU greater than a predetermined threshold by the confidence score. Additionally, the SR-CNN methodology uses two feature weighting methods based on the channel domain attention mechanism and regularized weights to provide a more appropriate feature fusion for the issue of a difficult ship from background differentiation in busy waters. By gathering images of ship monitoring, a ship dataset is created to conduct comparative testing. The experimental results demonstrate that, when compared to the three traditional two-stage target detection algorithms Faster R-CNN, Cascade R-CNN, and Libra R-CNN, this paper?s algorithm Ship R-CNN can effectively identify ship targets in the complex background of far-shore scenes where the distinction between the complex background and the ship targets is low. The suggested approach can enhance detection and decrease misses for small ship targets where it is challenging to distinguish between ship targets and complex background objects in a far-shore setting.

 Artículos similares

       
 
Bilgin Metin, Sefa Duran, Eda Telli, Meltem Mutlutürk and Martin Wynn    
In today?s technology-centric business environment, where organizations encounter numerous cyber threats, effective IT risk management is crucial. An objective risk assessment?based on information relating to business requirements, human elements, and th... ver más
Revista: Information

 
Jee-Tae Park, Chang-Yui Shin, Ui-Jun Baek and Myung-Sup Kim    
The classification of encrypted traffic plays a crucial role in network management and security. As encrypted network traffic becomes increasingly complicated and challenging to analyze, there is a growing need for more efficient and comprehensive analyt... ver más
Revista: Applied Sciences

 
Shoffan Saifullah and Rafal Drezewski    
Accurate medical image segmentation is paramount for precise diagnosis and treatment in modern healthcare. This research presents a comprehensive study of the efficacy of particle swarm optimization (PSO) combined with histogram equalization (HE) preproc... ver más
Revista: Applied Sciences

 
Ziqi Liu, Shogo Okamoto, Tomohito Kuroda and Yasuhiro Akiyama    
Gait stability indices are crucial for identifying individuals at risk of falling while walking. The margin of stability is one such index, known for its good construct validity. Generally, the measurement of this stability index requires a motion captur... ver más
Revista: Applied Sciences

 
MohammadHossein Reshadi, Wen Li, Wenjie Xu, Precious Omashor, Albert Dinh, Scott Dick, Yuntong She and Michael Lipsett    
Anomaly detection in data streams (and particularly time series) is today a vitally important task. Machine learning algorithms are a common design for achieving this goal. In particular, deep learning has, in the last decade, proven to be substantially ... ver más
Revista: Algorithms