Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Algorithms  /  Vol: 16 Par: 11 (2023)  /  Artículo
ARTÍCULO
TITULO

Machine Learning-Based Approach for Predicting Diabetes Employing Socio-Demographic Characteristics

Md. Ashikur Rahman    
Lway Faisal Abdulrazak    
Md. Mamun Ali    
Imran Mahmud    
Kawsar Ahmed and Francis M. Bui    

Resumen

Diabetes is one of the fatal diseases that play a vital role in the growth of other diseases in the human body. From a clinical perspective, the most significant approach to mitigating the effects of diabetes is early-stage control and management, with the aim of a potential cure. However, lack of awareness and expensive clinical tests are the primary reasons why clinical diagnosis and preventive measures are neglected in lower-income countries like Bangladesh, Pakistan, and India. From this perspective, this study aims to build an automated machine learning (ML) model, which will predict diabetes at an early stage using socio-demographic characteristics rather than clinical attributes, due to the fact that clinical features are not always accessible to all people from lower-income countries. To find the best fit of the supervised ML classifier of the model, we applied six classification algorithms and found that RF outperformed with an accuracy of 99.36%. In addition, the most significant risk factors were found based on the SHAP value by all the applied classifiers. This study reveals that polyuria, polydipsia, and delayed healing are the most significant risk factors for developing diabetes. The findings indicate that the proposed model is highly capable of predicting diabetes in the early stages.

 Artículos similares

       
 
Jungyeon Choi, Brian A. Knarr, Jong-Hoon Youn and Kwang Yoon Song    

 
Darin Majnaric, Sandi Baressi ?egota, Nikola Andelic and Jerolim Andric    
One of the main problems in the application of machine learning techniques is the need for large amounts of data necessary to obtain a well-generalizing model. This is exacerbated for studies in which it is not possible to access large amounts of data?fo... ver más

 
Xiaohui Yan, Tianqi Zhang, Wenying Du, Qingjia Meng, Xinghan Xu and Xiang Zhao    
Water quality prediction, a well-established field with broad implications across various sectors, is thoroughly examined in this comprehensive review. Through an exhaustive analysis of over 170 studies conducted in the last five years, we focus on the a... ver más

 
Saikat Das, Mohammad Ashrafuzzaman, Frederick T. Sheldon and Sajjan Shiva    
The distributed denial of service (DDoS) attack is one of the most pernicious threats in cyberspace. Catastrophic failures over the past two decades have resulted in catastrophic and costly disruption of services across all sectors and critical infrastru... ver más
Revista: Algorithms

 
Eike Blomeier, Sebastian Schmidt and Bernd Resch    
In the early stages of a disaster caused by a natural hazard (e.g., flood), the amount of available and useful information is low. To fill this informational gap, emergency responders are increasingly using data from geo-social media to gain insights fro... ver más
Revista: Information