Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Future Internet  /  Vol: 15 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

Explainable Lightweight Block Attention Module Framework for Network-Based IoT Attack Detection

Furkat Safarov    
Mainak Basak    
Rashid Nasimov    
Akmalbek Abdusalomov and Young Im Cho    

Resumen

In the rapidly evolving landscape of internet usage, ensuring robust cybersecurity measures has become a paramount concern across diverse fields. Among the numerous cyber threats, denial of service (DoS) and distributed denial of service (DDoS) attacks pose significant risks, as they can render websites and servers inaccessible to their intended users. Conventional intrusion detection methods encounter substantial challenges in effectively identifying and mitigating these attacks due to their widespread nature, intricate patterns, and computational complexities. However, by harnessing the power of deep learning-based techniques, our proposed dense channel-spatial attention model exhibits exceptional accuracy in detecting and classifying DoS and DDoS attacks. The successful implementation of our proposed framework addresses the challenges posed by imbalanced data and exhibits its potential for real-world applications. By leveraging the dense channel-spatial attention mechanism, our model can precisely identify and classify DoS and DDoS attacks, bolstering the cybersecurity defenses of websites and servers. The high accuracy rates achieved across different datasets reinforce the robustness of our approach, underscoring its efficacy in enhancing intrusion detection capabilities. As a result, our framework holds promise in bolstering cybersecurity measures in real-world scenarios, contributing to the ongoing efforts to safeguard against cyber threats in an increasingly interconnected digital landscape. Comparative analysis with current intrusion detection methods reveals the superior performance of our model. We achieved accuracy rates of 99.38%, 99.26%, and 99.43% for Bot-IoT, CICIDS2017, and UNSW_NB15 datasets, respectively. These remarkable results demonstrate the capability of our approach to accurately detect and classify various types of DoS and DDoS assaults. By leveraging the inherent strengths of deep learning, such as pattern recognition and feature extraction, our model effectively overcomes the limitations of traditional methods, enhancing the accuracy and efficiency of intrusion detection systems.

Palabras claves

 Artículos similares

       
 
Roman Odarchenko, Maksim Iavich, Giorgi Iashvili, Solomiia Fedushko and Yuriy Syerov    
It is clear that 5G networks have already become integral to our present. However, a significant issue lies in the fact that current 5G communication systems are incapable of fully ensuring the required quality of service and the security of transmitted ... ver más

 
Mustafa Al Lail, Alejandro Garcia and Saul Olivo    
Modern society has quickly evolved to utilize communication and data-sharing media with the advent of the internet and electronic technologies. However, these technologies have created new opportunities for attackers to gain access to confidential electr... ver más
Revista: Future Internet

 
Mohamed Mesbah, Mahmoud Said Elsayed, Anca Delia Jurcut and Marianne Azer    
Supervisory control and data acquisition (SCADA) attacks have increased due to the digital transformation of many industrial control systems (ICS). Operational technology (OT) operators should use the defense-in-depth concept to secure their operations f... ver más
Revista: Future Internet

 
Amthal K. Mousa and Mohammed Najm Abdullah    
The software defined network (SDN) collects network traffic data and proactively manages networks. SDN?s programmability makes it excellent for developing distributed applications, cybersecurity, and decentralized network control in multitenant data cent... ver más
Revista: Future Internet

 
Afnan Alotaibi and Murad A. Rassam    
Concerns about cybersecurity and attack methods have risen in the information age. Many techniques are used to detect or deter attacks, such as intrusion detection systems (IDSs), that help achieve security goals, such as detecting malicious attacks befo... ver más
Revista: Future Internet