Redirigiendo al acceso original de articulo en 19 segundos...
ARTÍCULO
TITULO

Optimal Design and Dynamic Analysis of Hydrofoil Mechanism of Wave Glider

Hongqiang Sang    
Jin Zhang    
Xiujun Sun    
Can Li    
Lei Wang and Liwei Wang    

Resumen

A wave glider can convert vertical wave motion into its forward propulsion. There are many factors affecting the propulsion performance of a wave glider. The swing amplitude of hydrofoil can affect the efficiency of hydrofoil to capture wave energy, and the pull direction of an umbilical cable can affect the transmission efficiency of wave energy. In this paper, an optimized hydrofoil mechanism with a self-adjusting lower limit (SALL) was proposed by analyzing the un- synchronized movement between the submerged glider and the surface float. This mechanism was able to transfer the movement of umbilical cable to the hydrofoil swing mechanism through the linkage to control the lower limit of hydrofoil swing (maximum swing angle of hydrofoil in a counterclockwise direction). Firstly, the user-defined function (UDF) was written to control the motion of hydrofoil in the fluid domain. The lower limit swing angle and the heave direction of the hydrofoil were both set in the UDF, and the forward thrust generated by the passive swing of the hydrofoil in the fluid domain was able to be obtained by the simulation. Secondly, the prototype was designed by introducing a parallelogram mechanism on a conventional submerged glider, and a wave simulation test platform was built to verify the propulsive performance of the prototype. The results showed that, in comparison with the conventional submerged glider, the forward thrust of the SALL submerged glider was able to be improved by 1.50%, 17.78%, 7.42%, and 20.70% under the stiffness coefficients of torsion spring set to K = 2, K = 4, K = 6, and K = 8 in the simulation experiment, respectively. The forward thrust of the SALL submerged glider was able to be elevated by 9.99% with torsion spring K = 8 in the tank experiment. The advantage of the SALL mechanism was verified by comparing the results of the simulation and the tank experiment. Finally, the feasibility of the SALL submerged glider was verified in actual sea conditions by a sea trial.