Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 7 (2022)  /  Artículo
ARTÍCULO
TITULO

Deep Neural Networks for Defects Detection in Gas Metal Arc Welding

Luigi Nele    
Giulio Mattera and Mario Vozza    

Resumen

Welding is one of the most complex industrial processes because it is challenging to model, control, and inspect. In particular, the quality inspection process is critical because it is a complex and time-consuming activity. This research aims to propose a system of online inspection of the quality of the welded items with gas metal arc welding (GMAW) technology through the use of neural networks to speed up the inspection process. In particular, following experimental tests, the deviations of the welding parameters?such as current, voltage, and welding speed?from the Welding Procedure Specification was used to train a fully connected deep neural network, once labels have been obtained for each weld seam of a multi-pass welding procedure through non-destructive testing, which made it possible to find a correspondence between welding defects (e.g., porosity, lack of penetrations, etc.) and process parameters. The final results have shown an accuracy greater than 93% in defects classification and an inference time of less than 150 ms, which allow us to use this method for real-time purposes. Furthermore in this work networks were trained to reach a smaller false positive rate for the classification task on test data, to reduce the presence of faulty parts among non-defective parts.

 Artículos similares

       
 
JongBae Kim    
This technology can prevent accidents involving large vehicles, such as trucks or buses, by selecting an optimal driving lane for safe autonomous driving. This paper proposes a method for detecting forward-driving vehicles within road images obtained fro... ver más
Revista: Applied Sciences

 
Jin-Woo Kong, Byoung-Doo Oh, Chulho Kim and Yu-Seop Kim    
Intracerebral hemorrhage (ICH) is a severe cerebrovascular disorder that poses a life-threatening risk, necessitating swift diagnosis and treatment. While CT scans are the most effective diagnostic tool for detecting cerebral hemorrhage, their interpreta... ver más
Revista: Applied Sciences

 
Tianhao Gao, Meng Zhang, Yifan Zhu, Youjian Zhang, Xiangsheng Pang, Jing Ying and Wenming Liu    
Classifying sports videos is complex due to their dynamic nature. Traditional methods, like optical flow and the Histogram of Oriented Gradient (HOG), are limited by their need for expertise and lack of universality. Deep learning, particularly Convoluti... ver más
Revista: Applied Sciences

 
Shurong Peng, Lijuan Guo, Haoyu Huang, Xiaoxu Liu and Jiayi Peng    
The integration of large-scale wind power into the power grid threatens the stable operation of the power system. Traditional wind power prediction is based on time series without considering the variability between wind turbines in different locations. ... ver más
Revista: Applied Sciences

 
Liang Liu, Tianbin Li and Chunchi Ma    
Three-dimensional (3D) models provide the most intuitive representation of geological conditions. Traditional modeling methods heavily depend on technicians? expertise and lack ease of updating. In this study, we introduce a deep learning-based method fo... ver más
Revista: Applied Sciences