Resumen
Understanding the damping mechanism of baffles is helpful to make more reasonable use of them in suppressing liquid sloshing. In this study, the damping effect and mechanism of vertical baffles in shallow liquid sloshing under a rotational excitation are investigated by an improved particle method. By incorporation of a background mesh scheme and a modified pressure gradient model, the accuracy of impact pressure during sloshing is significantly enhanced. Combined with the advantages of the particle method, the present numerical method is a wonderful tool for the investigation of liquid sloshing issues. Through the analysis of impact pressure, the influences of baffle height and baffle position on the damping mechanism are discussed. The results show that the damping effect of vertical baffles increases with the increase of the elevation of baffle top and decreases with the increase of the elevation of the baffle bottom. Moreover, the resonance characteristics of sloshing are altered when static water is divided into two parts by the vertical baffle. The dominant damping mechanism of vertical baffles depends on the configurations.