Redirigiendo al acceso original de articulo en 22 segundos...
ARTÍCULO
TITULO

Numerical Simulation of Flow Control around a Circular Cylinder by Installing a Wedge-Shaped Device Upstream

Xiaoshuang Han    
Jie Wang    
Bo Zhou    
Guiyong Zhang and Soon-Keat Tan    

Resumen

The effect of a triangular wedge upstream of a circular cylinder has been investigated, and the findings are presented herein. The triangular wedge is equilateral in plan form, and the Reynolds number based on the diameter of the main cylinder is approximately 200. Contours of vorticity clearly show that two entirely different wake patterns exist between the wedge and the main cylinder. There also exists a critical spacing ratio and side length ratio at which the wake flow pattern shifts from one within the cavity mode to one within the wake impingement mode. For a relatively small side length ratio of lw/D" role="presentation" style="position: relative;">????/Dlw/D l w / D = 0.20 and 0.27, where the side length refers to the length of one side of the triangular wedge, the drag and lift coefficients decrease monotonically with the spacing ratio. There is a sudden jump of the drag and lift coefficients at larger side length ratios of lw/D" role="presentation" style="position: relative;">????/Dlw/D l w / D = 0.33 and 0.40. This study shows that at a spacing ratio of L/D = 2.8 (where L is the distance between the vertex of the wedge and the center of the cylinder) and a wedge side length of lw/D" role="presentation" style="position: relative;">????/Dlw/D l w / D = 0.40, the reduction of the amplitude of lift and mean drag coefficient on the main cylinder are 71.9% and 60.1%, respectively.