Redirigiendo al acceso original de articulo en 24 segundos...
ARTÍCULO
TITULO

Deep Reinforcement Learning Based Time-Domain Interference Alignment Scheduling for Underwater Acoustic Networks

Nan Zhao    
Nianmin Yao    
Zhenguo Gao and Zhimao Lu    

Resumen

Message conflicts caused by large propagation delays severely affect the performance of Underwater Acoustic Networks (UWANs). It is necessary to design an efficient transmission scheduling algorithm to improve the network performance. Therefore, we propose a Deep Reinforcement Learning (DRL) based Time-Domain Interference Alignment (TDIA) scheduling algorithm (called DRLSA-IA). The main objective of DRLSA-IA is to increase network throughput and reduce collisions. In DRLSA-IA, underwater nodes are regarded as agents of DRL. Nodes intelligently learn the scheduling by continuously interacting with the environment. Therefore, DRLSA-IA is suitable for the highly dynamic underwater environment. Moreover, we design a TDIA-based reward mechanism to improve the network throughput. With the TDIA-based reward mechanism, DRLSA-IA can achieve parallel transmissions and effectively reduce conflicts. Unlike other TDIA-based algorithms that require enumeration of the state space, nodes merely feed the current state to obtain the transmission decision. DRLSA-IA solves the problem of computational expense. Simulation results show that DRLSA-IA can greatly improve the network performance, especially in terms of throughput, packet delivery ratio and fairness under different network settings. Overall, DRLSA-IA can effectively improve network performance and is suitable for ever-changing underwater environments.

 Artículos similares

       
 
Zheng Li, Xinkai Chen, Jiaqing Fu, Ning Xie and Tingting Zhao    
With the development of electronic game technology, the content of electronic games presents a larger number of units, richer unit attributes, more complex game mechanisms, and more diverse team strategies. Multi-agent deep reinforcement learning shines ... ver más
Revista: Algorithms

 
Bohdan Petryshyn, Serhii Postupaiev, Soufiane Ben Bari and Armantas Ostreika    
The development of autonomous driving models through reinforcement learning has gained significant traction. However, developing obstacle avoidance systems remains a challenge. Specifically, optimising path completion times while navigating obstacles is ... ver más
Revista: Information

 
Bowen Xing, Xiao Wang and Zhenchong Liu    
The path planning strategy of deep-sea mining vehicles is an important factor affecting the efficiency of deep-sea mining missions. However, the current traditional path planning algorithms suffer from hose entanglement problems and small coverage in the... ver más

 
Eyad K. Sayhood, Nisreen S. Mohammed, Salam J. Hilo and Salih S. Salih    
This paper presents comprehensive empirical equations to predict the shear strength capacity of reinforced concrete deep beams, with a focus on improving the accuracy of existing codes. Analyzing 198 deep beams imported from 15 existing investigations, t... ver más
Revista: Infrastructures

 
Juyao Wei, Zhenggang Lu, Zheng Yin and Zhipeng Jing    
This paper presents a novel data-driven multiagent reinforcement learning (MARL) controller for enhancing the running stability of independently rotating wheels (IRW) and reducing wheel?rail wear. We base our active guidance controller on the multiagent ... ver más
Revista: Applied Sciences