Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

Fatigue Assessment of Moorings for Floating Offshore Wind Turbines by Advanced Spectral Analysis Methods

Vincenzo Piscopo    
Antonio Scamardella    
Giovanni Battista Rossi    
Francesco Crenna and Marta Berardengo    

Resumen

The fatigue assessment of mooring lines for floating offshore wind turbines represents a challenging issue not only for the reliable design of the stationkeeping system but also for the economic impact on the installation and maintenance costs over the entire lifetime of the offshore wind farm. After a brief review about the state-of-art, the nonlinear time-domain hydrodynamic model of floating offshore wind turbines moored by chain cables is discussed. Subsequently, the assessment of the fatigue damage in the mooring lines is outlined, focusing on the combined-spectrum approach. The relevant fatigue parameters, due to the low- and wave-frequency components of the stress process, are estimated by two different methods. The former is based on the time-domain analysis of the filtered stress process time history. The latter, instead, is based on the spectral analysis of the stress process by two advanced methods, namely the Welch and Thomson ones. Subsequently, a benchmark study is performed, assuming as reference floating offshore wind turbine the OC4-DeepCWind semisubmersible platform, equipped with the 5 MW NREL wind turbine. The cumulative fatigue damage is determined for eight load conditions, including both power production and parked wind turbine situations. A comparative analysis between time-domain and spectral analysis methods is also performed. Current results clearly show that the endorsement of advanced spectral analysis methods can be helpful to improve the reliability of the fatigue life assessment of mooring lines.

 Artículos similares

       
 
Maximilian Granzner, Alfred Strauss, Michael Reiterer, Maosen Cao and Drahomír Novák    
Railway noise barrier constructions are subjected to high aerodynamic loads during the train passages, and the knowledge of their actual structural condition is relevant to assure safety for railway users and to create a basis for forecasting. This paper... ver más
Revista: Infrastructures

 
Xing Zou, Botao Xie, Zhipeng Zang, Enbang Chen and Jing Hou    
Sand waves are commonly formed on the sandy seabed of the continental shelf and characterized by their regular wave-like shape. When a submarine pipeline is laid on this type of seabed, it often experiences free spans due to the unevenness of the seabed.... ver más

 
Huating Chen, Yifan Zhuo, Yubo Jiao and Weigang Bao    
The fatigue safety of cable-girder anchorage structures in cable-stayed bridges under long-term service has attracted much attention. For bridges located in seasonally cold regions, the effect of low-temperature environments should be considered when eva... ver más
Revista: Applied Sciences

 
Arman Kakaie, C. Guedes Soares, Ahmad Kamal Ariffin and Wonsiri Punurai    
A fracture mechanics-based fatigue reliability analysis of a submarine pipeline is investigated using the Bayesian approach. The proposed framework enables the estimation of the reliability level of submarine pipelines based on limited experimental data.... ver más

 
Jinfeng Liu, Guoqing Feng, Jiaying Wang, Huilong Ren, Wei Song and Panpan Lin    
Welding defects are known to cause crack propagation and reduce structural fatigue performance. Based on the Paris theory of fracture mechanics, research is conducted on evaluation methods for analyzing fatigue crack propagation by adopting random loads ... ver más