Resumen
An unmanned aerial vehicle-assisted water quality measurement system (UAMS) was developed for in situ surface water quality measurement. A custom-built hexacopter was equipped with an open-source electronic sensors platform to measure the temperature, electrical conductivity (EC), dissolved oxygen (DO), and pH of water. Electronic components of the system were coated with a water-resistant film, and the hexacopter was assembled with flotation equipment. The measurements were made at thirteen sampling waypoints within a 1.1 ha agricultural pond. Measurements made by an open-source multiprobe meter (OSMM) attached to the unmanned aerial vehicle (UAV) were compared to the measurements made by a commercial multiprobe meter (CMM). Percent differences between the OSMM and CMM measurements for DO, EC, pH, and temperature were 2.1%, 3.43%, 3.76%, and <1.0%, respectively. The collected water quality data was used to interpret the spatial distribution of measurements in the pond. The UAMS successfully made semiautonomous in situ water quality measurements from predetermined waypoints. Water quality maps showed homogeneous distribution of measured constituents across the pond. The concept presented in this paper can be applied to the monitoring of water quality in larger surface waterbodies.