Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Coatings  /  Vol: 7 Par: 12 (2017)  /  Artículo
ARTÍCULO
TITULO

Influence of Power Pulse Parameters on the Microstructure and Properties of the AlCrN Coatings by a Modulated Pulsed Power Magnetron Sputtering

Jun Zheng    
Hui Zhou    
Binhua Gui    
Quanshun Luo    
Haixu Li and Qimin Wang    

Resumen

In this study, AlCrN coatings were deposited using modulated pulsed power magnetron sputtering (MPPMS) with different power pulse parameters by varying modulated pulsed power (MPP) charge voltages (350 to 550 V). The influence of power pulse parameters on the microstructure, mechanical properties and thermal stability of the coatings was investigated. The results indicated that all the AlCrN coatings exhibited a dense columnar microstructure. Higher charge voltage could facilitate a denser coating microstructure. As the charge voltage increased up to 450 V or higher, the microvoids along the column boundaries disappeared and the coatings became fully dense. The main phase in the AlCrN coatings was the c-(Al, Cr)N solid solution phase with NaCl-type phase structure. A diffraction peak of the h-AlN phase was detected at a 2? of around 33°, when the charge voltage was higher than 500 V. The hardness of the AlCrN coatings varied as a function of charge voltage. The maximum value of the hardness (30.8 GPa) was obtained at 450 V. All the coatings showed good thermal stability and maintained their structure and mechanical properties unchanged up to 800 °C during vacuum annealing. However, further increasing the annealing temperature to 1000 °C resulted in apparent change in the microstructure and decrease in the hardness. The charge voltages also showed a significant influence on the high-temperature tribological behavior of the coatings. The coating deposited at the charge voltage of 550 V exhibited excellent tribological properties with a low friction coefficient.

 Artículos similares

       
 
Guodong Zhang, Changjiang Wang, Shuzhan Bai, Guoxiang Li, Ke Sun and Hao Cheng    
To further improve the performance of the Proton Exchange Membrane Fuel Cell (PEMFC), in this paper, we designed a blocked flow channel with trapezoidal baffles, and geometric parameters of the baffle were optimized based on CFD simulation, Artificial Ne... ver más
Revista: Applied Sciences

 
Bangchu Zhang, Hao Fu, Weiyu Zhu, Kuijian Yang and Yuanming Xu    
The thermal problem of high-altitude airships has an essential impact on position control and energy system performance. Adjusting the airship?s attitude angle causes differences in thermal performance during position alterations. This paper studies an a... ver más
Revista: Aerospace

 
Ulrich Carsten Johannes Rischmüller, Alexandros Lessis, Patrick Egerer and Mirko Hornung    
A wide range of aircraft propulsion technologies is being investigated in current research to reduce the environmental impact of commercial aviation. As the implementation of purely hydrogen-powered aircraft may encounter various challenges on the airpor... ver más
Revista: Aerospace

 
Jun Wang, Bo Yang, Bingchen Liang, Zai-Jin You, Zhenlu Wang and Zhaowei Wang    
In this study, laboratory experiments were conducted to investigate the influence of changes in storm wave height and water level on beach response in a medium-scale wave flume. A schematic storm was simulated (rising, apex, and waning phases). A non-int... ver más

 
Deokhee Won, Jihye Seo, Osoon Kwon, Hae-Young Park and Hyoun Kang    
The foundations of offshore wind power can be classified as floating, tripod, jacket, monopile, or gravity-based, depending on the support type. In the case of tripod- and jacket-type supports, the structures require precise construction. There are two m... ver más