Resumen
Open educational resources (OER) can contribute to democratize education by providing effective learning experiences with lower costs. Nevertheless, the massive amount of resources currently available in OER repositories makes it difficult for teachers and learners to find relevant and high-quality content, which is hindering OER use and adoption. Recommender systems that use data related to the pedagogical quality of the OER can help to overcome this problem. However, studies analyzing the usefulness of these data for generating OER recommendations are very limited and inconclusive. This article examines the usefulness of using pedagogical quality scores for generating OER recommendations in OER repositories by means of a user study that compares the following four different recommendation approaches: a traditional content-based recommendation technique, a quality-based non-personalized recommendation technique, a hybrid approach that combines the two previous techniques, and random recommendations. This user study involved 53 participants and 400 OER whose quality was evaluated by reviewers using the Learning Object Review Instrument (LORI). The main finding of this study is that pedagogical quality scores can enhance traditional content-based OER recommender systems by allowing them to recommend OER with more quality without detriment to relevance.