Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Algorithms  /  Vol: 15 Par: 9 (2022)  /  Artículo
ARTÍCULO
TITULO

Computational Analysis of PDE-Based Shape Analysis Models by Exploring the Damped Wave Equation

Alexander Köhler and Michael Breuß    

Resumen

The computation of correspondences between shapes is a principal task in shape analysis. In this work, we consider correspondences constructed by a numerical solution of partial differential equations (PDEs). The underlying model of interest is thereby the classic wave equation, since this may give the most accurate shape matching. As has been observed in previous works, numerical time discretisation has a substantial influence on matching quality. Therefore, it is of interest to understand the underlying mechanisms and to investigate at the same time if there is an analytical model that could best describe the most suitable method for shape matching. To this end, we study here the damped wave equation, which mainly serves as a tool to understand and model properties of time discretisation. At the hand of a detailed study of possible parameters, we illustrate that the method that gives the most reasonable feature descriptors benefits from a damping mechanism which can be introduced numerically or within the PDE. This sheds light on some basic mechanisms of underlying computational and analytic models, as one may conjecture by our investigation that an ideal model could be composed of a transport mechanism and a diffusive component that helps to counter grid effects.

 Artículos similares

       
 
?iga Unuk and Milan Kuhta    
A nonlinear semi-numeric and finite element analysis of three-point bending tests of notched polymer fiber-reinforced concrete prisms was performed. The computational and experimental results were compared in terms of the load-displacement behavior. The ... ver más
Revista: Applied Sciences

 
Yalin Dai, Zhouwei Fan, Jian Xu, You He and Xiongqing Yu    
A special feature of airbreathing hypersonic aircraft is the complex coupling between aerodynamic and propulsive performances. This study presents a rapid analysis methodology for the integration of these two critical aspects in the conceptual design of ... ver más
Revista: Aerospace

 
George Tzoumakis, Konstantinos Fotopoulos and George Lampeas    
Future liquid hydrogen-powered aircraft requires the design and optimization of a large number of systems and subsystems, with cryogenic tanks being one of the largest and most critical. Considering previous space applications, these tanks are usually st... ver más
Revista: Aerospace

 
Sheng Zhang, Yuguang Bai, Youwei Zhang and Dan Zhao    
Hypersonic vehicles or engines usually employ complex thermal protecting shells. This sometimes brings multi-physics difficulties, e.g., thermal-aeroelastic problems like panel flutter etc. This paper aims to propose a novel optimization method versus th... ver más
Revista: Aerospace

 
Gleice Kelly Barbosa Souza, Samara Oliveira Silva Santos, André Luiz Carvalho Ottoni, Marcos Santos Oliveira, Daniela Carine Ramires Oliveira and Erivelton Geraldo Nepomuceno    
Reinforcement learning is an important technique in various fields, particularly in automated machine learning for reinforcement learning (AutoRL). The integration of transfer learning (TL) with AutoRL in combinatorial optimization is an area that requir... ver más
Revista: Algorithms