Resumen
Computer security depends mainly on passwords to protect human users from attackers. Therefore, manual and alphanumerical passwords are the most frequent type of computer authentication. However, creating these passwords has significant drawbacks. For example, users often tend to choose passwords based on personal information so that they can be memorable and therefore weak and guessable. In contrast, it is often difficult to remember if the password is difficult to guess. We propose an intelligent security model for password generation and estimation to address these problems using the ensemble learning approach and hand gesture features. This paper proposes two intelligent stages: the first is the password generation stage based on the ensemble learning approach and the proposed S-Box. The second is the password strength estimation stage, also based on the ensemble learning approach. Four well-known classifiers are used: Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), Random Forest Tree (RFT), and AdaBoost applied on two datasets: MNIST images dataset and password strength dataset. The experimental results showed that the hand gesture and password strength classification processes accurately performed at 99% in AUC, Accuracy, F1-measures, Precision, and Recall. As a result, the extracted features of hand gestures will directly impact the complexity of generated passwords, which are very strong, hard to guess, and memorable.