Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Applied Sciences  /  Vol: 11 Par: 9 (2021)  /  Artículo
ARTÍCULO
TITULO

Automatic Classification of UML Class Diagrams Using Deep Learning Technique: Convolutional Neural Network

Bethany Gosala    
Sripriya Roy Chowdhuri    
Jyoti Singh    
Manjari Gupta and Alok Mishra    

Resumen

Unified Modeling Language (UML) includes various types of diagrams that help to study, analyze, document, design, or develop any software efficiently. Therefore, UML diagrams are of great advantage for researchers, software developers, and academicians. Class diagrams are the most widely used UML diagrams for this purpose. Despite its recognition as a standard modeling language for Object-Oriented software, it is difficult to learn. Although there exist repositories that aids the users with the collection of UML diagrams, there is still much more to explore and develop in this domain. The objective of our research was to develop a tool that can automatically classify the images as UML class diagrams and non-UML class diagrams. Earlier research used Machine Learning techniques for classifying class diagrams. Thus, they are required to identify image features and investigate the impact of these features on the UML class diagrams classification problem. We developed a new approach for automatically classifying class diagrams using the approach of Convolutional Neural Network under the domain of Deep Learning. We have applied the code on Convolutional Neural Networks with and without the Regularization technique. Our tool receives JPEG/PNG/GIF/TIFF images as input and predicts whether it is a UML class diagram image or not. There is no need to tag images of class diagrams as UML class diagrams in our dataset.

 Artículos similares

       
 
Urszula Libal and Pawel Biernacki    
An automatic honey bee classification system based on audio signals for tracking the frequency of workers and drones entering and leaving a hive.
Revista: Applied Sciences

 
Hao Gu, Ming Chen and Dongmei Gan    
The identification of gender in Chinese mitten crab juveniles is a critical prerequisite for the automatic classification of these crab juveniles. Aiming at the problem that crab juveniles are of different sizes and relatively small, with unclear male an... ver más
Revista: Applied Sciences

 
Nadia Brancati and Maria Frucci    
To support pathologists in breast tumor diagnosis, deep learning plays a crucial role in the development of histological whole slide image (WSI) classification methods. However, automatic classification is challenging due to the high-resolution data and ... ver más
Revista: Information

 
Bochi Guo, Yu Liu, Hui Zhou, Wei Yan and Shuanggen Zhang    
Automatic modulation recognition (AMR) provides excellent performance advantages over conventional algorithms and plays a key role in modern communication. However, a general challenge is that the channel errors greatly deteriorate the classification cap... ver más
Revista: Applied Sciences

 
Luis M. de Campos, Juan M. Fernández-Luna, Juan F. Huete, Francisco J. Ribadas-Pena and Néstor Bolaños    
In the context of academic expert finding, this paper investigates and compares the performance of information retrieval (IR) and machine learning (ML) methods, including deep learning, to approach the problem of identifying academic figures who are expe... ver más
Revista: Algorithms