Redirigiendo al acceso original de articulo en 22 segundos...
ARTÍCULO
TITULO

Development of An Integrated Numerical Model for Simulating Wave Interaction with Permeable Submerged Breakwaters Using Extended Navier?Stokes Equations

Paran Pourteimouri and Kourosh Hejazi    

Resumen

An integrated two-dimensional vertical (2DV) model was developed to investigate wave interactions with permeable submerged breakwaters. The integrated model is capable of predicting the flow field in both surface water and porous media on the basis of the extended volume-averaged Reynolds-averaged Navier?Stokes equations (VARANS). The impact of porous medium was considered by the inclusion of the additional terms of drag and inertia forces into conventional Navier?Stokes equations. Finite volume method (FVM) in an arbitrary Lagrangian?Eulerian (ALE) formulation was adopted for discretization of the governing equations. Projection method was utilized to solve the unsteady incompressible extended Navier?Stokes equations. The time-dependent volume and surface porosities were calculated at each time step using the fraction of a grid open to water and the total porosity of porous medium. The numerical model was first verified against analytical solutions of small amplitude progressive Stokes wave and solitary wave propagation in the absence of a bottom-mounted barrier. Comparisons showed pleasing agreements between the numerical predictions and analytical solutions. The model was then further validated by comparing the numerical model results with the experimental measurements of wave propagation over a permeable submerged breakwater reported in the literature. Good agreements were obtained for the free surface elevations at various spatial and temporal scales, velocity fields around and inside the obstacle, as well as the velocity profiles.

 Artículos similares

       
 
Armando Silva-Afonso and Carla Pimentel-Rodrigues    
The objective of this article is to deepen knowledge about the existing connections, at the level of urban environments, between energy, water, and nutrients (or food). Energy and basic resources?water and food?are closely interconnected, which is why th... ver más
Revista: Water

 
Tiankai Yang, Zhenzhong Sun, Yongliang Liang and Lichuan Liu    
With the rapid development of global trade, a large number of goods and resources are imported and exported via seaports. Multiple thermal loads and renewable energy merge into seaports, making the energy supply and demand structure increasingly complex.... ver más

 
Song Song, Lehui Fang, Jinxin Yang, Rui Zhou, Gale Bai and Yuqi Qiu    
The spatial-temporal mismatch of water resources and socio-economic development in rapidly urbanized regions has been the focus of water resource management, and is one of the main limitations to sustainable development goals (SDGs). Guangdong Province i... ver más
Revista: Water

 
Qiankun Wang, Ke Zhu, Peiwen Guo, Jiaji Zhang and Zhihua Xiong    
Faced with the challenges of global climate change, zero-carbon buildings (ZCB) serve as a crucial means to achieve carbon peak and carbon neutrality goals, particularly in the development of tropical island regions. This study aims to establish a ZCB te... ver más
Revista: Applied Sciences

 
Nikolaos Zafeiropoulos, Pavlos Bitilis, George E. Tsekouras and Konstantinos Kotis    
In the realm of Parkinson?s Disease (PD) research, the integration of wearable sensor data with personal health records (PHR) has emerged as a pivotal avenue for patient alerting and monitoring. This study delves into the complex domain of PD patient car... ver más
Revista: Information