Resumen
When a propeller is under a state of cavitation, it will experience negative effects, including strong noise, vibration, and even damage to the blades. Accordingly, the detection of propeller cavitation has attracted the attention of researchers. Propeller noise signal contains a wealth of cavitation information, which is a powerful method to identify the cavitation state. Considering the nonlinear characteristics of propeller noise, a feature describing the complexity of nonlinear signals, which is called refined composite multiscale fluctuation-based dispersion entropy (RCMFDE), is adopted as the indicator of propeller cavitation, and a framework for the identification of propeller cavitation state is established in this paper. Firstly, the propeller noise signal is decomposed by the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method, and the intrinsic mode function (IMF) components with cavitation characteristics are extracted. Secondly, the RCMFDE of the IMF components is computed. Finally, a hybrid optimization support vector machine (SVM) is established to classify the features, in which a Relief-F filter is utilized to reduce the feature dimension, and a particle swarm optimization (PSO) wrapper is utilized to optimize the parameters of the SVM. The experimental results demonstrate encouraging accuracy to apply this approach to identify the propeller cavitation states, with an identification accuracy of 91.11%.