Resumen
ROV trencher is a kind of ROV which trenches the sea floor using a specifically designed tool and buries the subsea cables and pipelines. According to the soil conditions, this trenching method can have two different types, one is mechanical cutting and the other one is water jetting. In this paper, we present a water jet tool design method for a 2500 m depth-rated ROV trencher. A series of CFD simulations and laboratory tests with one nozzle, and a ground test using 1:6 scale jetting arm model were carried out to derive and demonstrate the jetting tool design parameters. In October 2018, the constructed ROV trencher was put into the sea trial in the East Sea of Korea to evaluate its final performances. In addition, in December 2019, the trencher was applied in a construction site to bury subsea water pipelines near the Yogji Island in the Korea. Through these two field tests and operation, the trencher was demonstrated for both its operational capability and trenching performance. The main contribution of this paper is that it presents the entire design procedures of water jet tools, including CFD simulations, laboratory tests, field test with 1:6 scaled jetting tool, and the final prototype tool design. These consecutive procedures are carried out in order for us to set up sort of relationship between jetting angle, trench depth, trench speed, and jetting power, from which we can predict and evaluate the trenching performance of the prototype jetting tool.