Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Water  /  Vol: 10 Par: 11 (2018)  /  Artículo
ARTÍCULO
TITULO

Analysis of Pressure Transient Following Rapid Filling of a Vented Horizontal Pipe

Lin Li    
David Z. Zhu and Biao Huang    

Resumen

Rapid filling/emptying of pipes is commonly encountered in water supply and sewer systems, during which pressure transients may cause unexpected large pressure and/or geyser events. In the present study, a linearized analytical model is first developed to obtain the approximate solutions of the maximum pressure and the characteristics of pressure oscillations caused by the pressurization of trapped air in a horizontal pipe when there is no or insignificant air release. The pressure pattern is a typical periodic wave, analogous to sinusoidal motion. The oscillation period and the time when the pressure attains the peak value are significantly influenced by the driving pressure and the initial length of the entrapped air pocket. When there is air release through a venting orifice, analysis by a three-dimensional computational fluid dynamics model using ANSYS Fluent was also conducted to furnish insights and details of air?water interactions. Flow features associated with the pressurization and air release were examined, and an air?water interface deformation that one-dimensional models are incapable of predicating was presented. Modelling results indicate that the residual air in the system depends on the relative position of the venting orifice. There are mainly two types of pressure oscillation patterns: namely, long or short-period oscillations and waterhammer. The latter can be observed when the venting orifice is located near the end of the pipe where the air is trapped.

 Artículos similares

       
 
Lin Sun, Junchao Li and Haoyu Lin    
Earthquakes impact the stability of municipal solid waste (MSW) landfills, especially those with high water levels, and may further lead to disastrous landslides. Numerical analysis offers an efficient and cost-effective way to study the seismic stabilit... ver más
Revista: Applied Sciences

 
Weidong Zhao, Bernt Johan Leira, Knut Vilhelm Høyland, Ekaterina Kim, Guoqing Feng and Huilong Ren    
This paper presents a framework for structural analysis of icebreakers during ramming of first-year ice ridges. The framework links the ice-ridge load and the structural analysis based on the physical characteristics of ship?ice-ridge interactions. A shi... ver más

 
Georgia Korompili, Günter Mußbach and Christos Riziotis    
In the realm of space exploration, solid rocket motors (SRMs) play a pivotal role due to their reliability and high thrust-to-weight ratio. Serving as boosters in space launch vehicles and employed in military systems, and other critical & emerging a... ver más
Revista: Instruments

 
Siliang Du, Yi Zha and Qijun Zhao    
The concept of the Fan Wing, a novel aircraft vector-force-integrated device that combines a power unit with a fixed wing to generate distributed lift and thrust by creating a low-pressure vortex on the wing?s surface, was studied. To investigate the uni... ver más
Revista: Aerospace

 
Guido Saccone and Marco Marini    
In the framework of the ?Multidisciplinary Optimization and Regulations for Low-boom and Environmentally Sustainable Supersonic aviation? project, pursued by a consortium of European government and academic institutions, coordinated by Politecnico di Tor... ver más
Revista: Aerospace