Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Algorithms  /  Vol: 13 Par: 8 (2020)  /  Artículo
ARTÍCULO
TITULO

Faster Algorithms for Mining Shortest-Path Distances from Massive Time-Evolving Graphs

Mattia D?Emidio    

Resumen

Computing shortest-path distances is a fundamental primitive in the context of graph data mining, since this kind of information is essential in a broad range of prominent applications, which include social network analysis, data routing, web search optimization, database design and route planning. Standard algorithms for shortest paths (e.g., Dijkstra?s) do not scale well with the graph size, as they take more than a second or huge memory overheads to answer a single query on the distance for large-scale graph datasets. Hence, they are not suited to mine distances from big graphs, which are becoming the norm in most modern application contexts. Therefore, to achieve faster query answering, smarter and more scalable methods have been designed, the most effective of them based on precomputing and querying a compact representation of the transitive closure of the input graph, called the 2-hop-cover labeling. To use such approaches in realistic time-evolving scenarios, when the managed graph undergoes topological modifications over time, specific dynamic algorithms, carefully updating the labeling as the graph evolves, have been introduced. In fact, recomputing from scratch the 2-hop-cover structure every time the graph changes is not an option, as it induces unsustainable time overheads. While the state-of-the-art dynamic algorithm to update a 2-hop-cover labeling against incremental modifications (insertions of arcs/vertices, arc weights decreases) offers very fast update times, the only known solution for decremental modifications (deletions of arcs/vertices, arc weights increases) is still far from being considered practical, as it requires up to tens of seconds of processing per update in several prominent classes of real-world inputs, as experimentation shows. In this paper, we introduce a new dynamic algorithm to update 2-hop-cover labelings against decremental changes. We prove its correctness, formally analyze its worst-case performance, and assess its effectiveness through an experimental evaluation employing both real-world and synthetic inputs. Our results show that it improves, by up to several orders of magnitude, upon average update times of the only existing decremental algorithm, thus representing a step forward towards real-time distance mining in general, massive time-evolving graphs.

 Artículos similares

       
 
Chaopeng Yang, Jiacai Pan, Kai Wei, Mengjie Lu and Shihao Jia    
Ocean currents make it difficult for unmanned surface vehicles (USVs) to keep a safe distance from obstacles. Effective path planning should adequately consider the effect of ocean currents on USVs. This paper proposes an improved A* algorithm based on a... ver más

 
Carlo Galli, Nikolaos Donos and Elena Calciolari    
Systematic reviews are cumbersome yet essential to the epistemic process of medical science. Finding significant reports, however, is a daunting task because the sheer volume of published literature makes the manual screening of databases time-consuming.... ver más
Revista: Information

 
Rong Wang, Xinyang Zhou, Yi Liu, Dongqi Liu, Yu Lu and Miao Su    
To ensure the safety and durability of concrete structures, timely detection and classification of concrete cracks using a low-cost and high-efficiency method is necessary. In this study, a concrete surface crack damage detection method based on the ResN... ver más
Revista: Applied Sciences

 
Jun Yeong Kim, Chang Geun Song, Jung Lee, Jong-Hyun Kim, Jong Wan Lee and Sun-Jeong Kim    
In this paper, we propose a learning model for tracking the isolines of fluid based on the physical properties of particles in particle-based fluid simulations. Our method involves analyzing which weights, closely related to surface tracking among the va... ver más
Revista: Applied Sciences

 
Haotian You, Yufang Lu and Haihua Tang    
Video object detection is an important research direction of computer vision. The task of video object detection is to detect and classify moving objects in a sequence of images. Based on the static image object detector, most of the existing video objec... ver más
Revista: Information