Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

Research on Position Sensorless Control of RDT Motor Based on Improved SMO with Continuous Hyperbolic Tangent Function and Improved Feedforward PLL

Hongfen Bai    
Bo Yu and Wei Gu    

Resumen

With the increasing use of electric propulsion ships, the emergence of the shaftless rim-driven thruster (RDT) as a revolutionary integrated motor thruster is gradually becoming an important development direction for green ships. The shaftless structure of RDTs leads to their dependence on position sensorless control techniques. In this study, a novel control algorithm using a composite sliding mode observer (SMO) with a modified feed-forward phase-locked loop (PLL) is presented for achieving high accuracy position and speed control of shaftless RDT motors. The deviation between the observed and actual currents is exploited to develop a current SMO to extract back electromotive force (back-EMF) errors. On this basis, a back-EMF observer is established to achieve accurate estimation of the back-EMF. The basic structure of the PLL was modified and incorporates a speed feedforward mechanism, which enhances the performance of rotor position estimation and facilitates bidirectional rotation. The stability of the algorithm has been verified in Matlab/Simulink for a range of steady-state, dynamic, and ship propeller loading conditions. Remarkably, the control algorithm boasts an impressive adjustment time of approximately 0.006 s and its position estimation error may be as low as 0.03 rad. Simulation results highlight the performance of the algorithm to achieve bidirectional rotation, while exhibiting fast convergence, minimal vibration, exceptional control accuracy, and robustness.

 Artículos similares

       
 
Simok Lee and Byeongil Kim    
Recently, performance development related to noise, vibration, and harshness in sunroof systems has attracted significant research attention. However, research thus far has been limited to analytical and experimental studies relating to structural improv... ver más
Revista: Applied Sciences

 
Shitu Chen, Ling Feng, Xuteng Bao, Zhe Jiang, Bowen Xing and Jingxiang Xu    
Path planning is crucial for unmanned surface vehicles (USVs) to navigate and avoid obstacles efficiently. This study evaluates and contrasts various USV path-planning algorithms, focusing on their effectiveness in dynamic obstacle avoidance, resistance ... ver más

 
Jili Kong and Zhen Wang    
With the gradual emergence of customized manufacturing, intelligent manufacturing systems have experienced widespread adoption, leading to a surge in research interests in the associated problem of intelligent scheduling. In this paper, we study the flex... ver más
Revista: Applied Sciences

 
Eyad K. Sayhood, Nisreen S. Mohammed, Salam J. Hilo and Salih S. Salih    
This paper presents comprehensive empirical equations to predict the shear strength capacity of reinforced concrete deep beams, with a focus on improving the accuracy of existing codes. Analyzing 198 deep beams imported from 15 existing investigations, t... ver más
Revista: Infrastructures

 
Kimoon Lee, Dongjin Kim, Daewon Chung and Seonho Lee    
This study explores optimizing Synthetic Aperture Radar (SAR) satellite constellation scheduling for multi-imaging missions in densely targeted areas using an in-house-developed Modified Dynamic Programming (MDP) algorithm. By employing Mixed-Integer Lin... ver más
Revista: Aerospace