Redirigiendo al acceso original de articulo en 22 segundos...
ARTÍCULO
TITULO

Deep Learning-Based Cyclic Shift Keying Spread Spectrum Underwater Acoustic Communication

Yufei Liu    
Feng Zhou    
Gang Qiao    
Yunjiang Zhao    
Guang Yang    
Xinyu Liu and Yinheng Lu    

Resumen

A deep learning-based cyclic shift keying spread spectrum (CSK-SS) underwater acoustic (UWA) communication system is proposed for improving the performance of the conventional system in low signal-to-noise ratio and multipath effects. The proposed deep learning-based system involves the long- and short-term memory (LSTM) architecture-based neural network model as the receiving module of the system. The neural network is fed with the communication signals passing through known channel impulse responses in the offline stage, and then directly used to demodulate the received signal in the online stage to reduce the influence of the above factors. Numerical simulation and actual data results suggest that the deep learning-based CSK-SS UWA communication system is more reliable communication than a conventional system. In particular, the collected experimental data show that after preprocessing, when the communication rate is less than 180 bps, a bit error rate of less than 10-3 can be obtained at a signal-to-noise ratio of -8 dB.

 Artículos similares

       
 
JongBae Kim    
This technology can prevent accidents involving large vehicles, such as trucks or buses, by selecting an optimal driving lane for safe autonomous driving. This paper proposes a method for detecting forward-driving vehicles within road images obtained fro... ver más
Revista: Applied Sciences

 
Yangqing Xu, Yuxiang Zhao, Qiangqiang Jiang, Jie Sun, Chengxin Tian and Wei Jiang    
During the construction of deep foundation pits in subways, it is crucial to closely monitor the horizontal displacement of the pit enclosure to ensure stability and safety, and to reduce the risk of structural damage caused by pit deformations. With adv... ver más
Revista: Applied Sciences

 
Mihael Gudlin, Miro Hegedic, Matija Golec and Davor Kolar    
In the quest for industrial efficiency, human performance within manufacturing systems remains pivotal. Traditional time study methods, reliant on direct observation and manual video analysis, are increasingly inadequate, given technological advancements... ver más
Revista: Applied Sciences

 
Zahra Ameli, Shabnam Jafarpoor Nesheli and Eric N. Landis    
The application of deep learning (DL) algorithms has become of great interest in recent years due to their superior performance in structural damage identification, including the detection of corrosion. There has been growing interest in the application ... ver más
Revista: Infrastructures

 
François Legrand, Richard Macwan, Alain Lalande, Lisa Métairie and Thomas Decourselle    
Automated Cardiac Magnetic Resonance segmentation serves as a crucial tool for the evaluation of cardiac function, facilitating faster clinical assessments that prove advantageous for both practitioners and patients alike. Recent studies have predominant... ver más
Revista: Algorithms