Resumen
The estimation of urban irrigation water requirements has often been approached from an agricultural perspective. This approach is flawed, as the intention of estimating agricultural water is to optimize yield. Recent studies have reported that urban irrigation systems waste about 34% of water, an alarming number for arid cities. The intention for urban irrigation is complex and dependent on the microclimates created by the development of the landscape. In this paper, we investigate the role of the urban landscape on the irrigation water requirements in arid cities. The role of the landscape in determining the irrigation water requirements is examined through the changes in surface-heat energy exchanges. The effects of landscapes are examined through land use change, buildings? geometry and orientation, and vegetation types. The irrigation water requirement is assessed as the function of urban evapotranspiration and irrigation efficiency. The development of land use characteristics includes the transition from undeveloped (natural) surfaces to residential, commercial, road surfaces, or vegetated surfaces. The orientation and geometry of the streets are assessed by changes in sky view factor values due to building geometry. Three landscapes varying in vegetation type and water use are investigated. The study focuses on understanding the heat exchanges and their effects on irrigation water requirements in arid climates. Two major cities were studied: Las Vegas Valley and Phoenix metropolitan. The study concludes that the development of hardscapes, including commercial and road infrastructures, increases the overall surface temperature by 2 °C per unit change in albedo, thereby increasing evapotranspiration and urban irrigation water requirement. In addition, landscape diversity also plays a crucial role in changing the irrigation water requirement. This study highlights the importance of making development decisions in urban settings and their effects on water resources. It also contributes by providing the major factors changing the urban irrigation requirement. The study can help urban water managers and climatologists to develop improved urban irrigation models.