Resumen
Vegetative pathogens actively grow in foods, metabolizing and dividing their cells. They have consequently become a focus of concern for the food industry, food regulators and food control agencies. Although much has been done by the food industry and food regulatory agencies, foodborne outbreaks are still reported globally, causing illnesses, hospitalizations, and in certain cases, deaths, together with product recalls and subsequent economic losses. Major bacterial infections from raw and processed foods are caused by Escherichia coli serotype O157:H7, Salmonella enteritidis, and Listeria monocytogenes. High pressure processing (HPP) (also referred to as high hydrostatic pressure, HHP) is a non-thermal pasteurization technology that relies on very high pressures (400?600 MPa) to inactivate pathogens, instead of heat, thus causing less negative impact in the food nutrients and quality. HPP can be used to preserve foods, instead of chemical food additives. In this study, a review of the effect of HPP treatments on major vegetative bacteria in specific foods was carried out. HPP at 600 MPa, commonly used by the food industry, can achieve the recommended 5?8-log reductions in E. coli, S. enteritidis, L. monocytogenes, and Vibrio. Staphylococcus aureus presented the highest resistance to HPP among the foodborne vegetative pathogens investigated, followed by E. coli. More susceptible L. monocytogenes and Salmonella spp. bacteria were reduced by 6 logs at pressures within 500?600 MPa. Vibrio spp. (e.g., raw oysters), Campylobacter jejuni, Yersinia enterocolitica, Citrobacter freundii and Aeromonas hydrophila generally required lower pressures (300?400 MPa) for inactivation. Bacterial species and strain, as well as the food itself, with a characteristic composition, affect the microbial inactivation. This review demonstrates that HPP is a safe pasteurization technology, which is able to achieve at least 5-log reduction in major food bacterial pathogens, without the application of heat.