Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Applied Sciences  /  Vol: 11 Par: 4 (2021)  /  Artículo
ARTÍCULO
TITULO

Finite Element Analysis of a Novel Approach for Knee and Ankle Protection during Landing

Xueqing Wu    
Baoqing Pei    
Wei Wang    
Da Lu    
Lei Guo and Peiyan He    

Resumen

There is a high risk of serious injury to the lower extremities during a human drop landing. Prophylactic knee and ankle braces are commonly used to reduce injury by restraining the motion of joints. However, braces that restrain joint range of motion (ROM) may have detrimental effects on the user?s kinematical performance and joint function. The present study aimed to propose a novel set of double-joint braces and to evaluate its protective performance in terms of the ankle and knee. Accordingly, the finite element method was performed to investigate the biomechanical responses of the ankle and knee in braced and unbraced conditions. The results showed that the semi-rigid support at the ankle joint can share the high impact force that would otherwise be inflicted on one?s lower extremity, thereby reducing the peak stress on the inferior articular surface of the tibia, menisci, and articular cartilages, as well as the horizontal force on the talus. Moreover, with knee bending, the elongated spring component at the knee joint can convert the impact kinetic energy into elastic potential energy of the spring; meanwhile, the retractive force generated by the spring also provides a more balanced interaction between the menisci and articular cartilages. This biomechanical analysis can accordingly provide inspiration for new approaches to place human lower extremities at lower risk during landings.

 Artículos similares

       
 
Cesare Patuelli, Enrico Cestino and Giacomo Frulla    
Vibration analysis of wing-box structures is a crucial aspect of the aeronautic design to avoid aeroelastic effects during normal flight operations. The deformation of a wing structure can induce nonlinear couplings, causing a different dynamic behavior ... ver más
Revista: Aerospace

 
Xingxing Huang, Kang Han, Zhenyu Lu, Shuncheng Zhang and Liang Guo    
In order to reduce the influence of temperature deformation of large-size body-mounted radiators on the observation accuracy of space station telescopes and adapt to launch vibration loads, this paper proposes a floating combination stress release mechan... ver más
Revista: Aerospace

 
George Tzoumakis, Konstantinos Fotopoulos and George Lampeas    
Future liquid hydrogen-powered aircraft requires the design and optimization of a large number of systems and subsystems, with cryogenic tanks being one of the largest and most critical. Considering previous space applications, these tanks are usually st... ver más
Revista: Aerospace

 
Grigorios Kostopoulos, Konstantinos Stamoulis, Vaios Lappas and Stelios K. Georgantzinos    
This study explores the shape-morphing behavior of 4D-printed structures made from Polylactic Acid (PLA), a prominent bio-sourced shape-memory polymer. Focusing on the response of these structures to thermal stimuli, this research investigates how variou... ver más
Revista: Aerospace

 
Long Li, Yiming Peng, Yifeng Wang, Xiaohui Wei and Hong Nie    
Arresting gear systems play a vital role in carrier-based aircraft landing. In order to accurately understand the process of arresting hook and cable, this study introduces a parameter inversion method to model the arresting cable and applies it to the t... ver más
Revista: Aerospace